PCS of nonphononic scattering mechanisms

  • Yu. G. Naidyuk
  • I. K. Yanson
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 145)


The impurities that retain their magnetic properties when added to a normal metal strongly scatter the conduction electrons. The scattering of this sort in a bulk conductor causes at low temperatures an abnormal rise of resistance for metals known as the Kondo effect [Kondo (1964)]. The classic Kondo alloys consist of noble metals Cu or Au with a small amount (≪ 1%) of impurities as Mn or Fe. Point contacts are proved to be a very sensitive probe for detecting of the magnetic impurities in a metal. This was already mentioned in the first point-contact measurements by Lysykh et al. (1980) with Fe embedded in the Cu host. In reality, when adding only 0.01% of iron or manganese atoms to gold or copper, the point-contact spectrum displays distinct additional features at low voltages around 1 meV (see Fig. 6.1), which are connected with the electron scattering by localized magnetic moments as was shown by Jansen et al. (1981) and Naidyuk et al. (1982). The number of impurity atoms getting into the contact area can be evaluated at the above-mentioned concentration c = 10−4. The total number of atoms in a constriction with the size d will be d 3 /v, where v is the unit cell volume. Then the number of impurity atoms n i is estimated as cd 3 /v. Taking for a copper v ≃ 10−23 cm3 and the contact size d ≃ 10−6 cm for a typical resistance of 10Ω, we obtain n i ≃ 10 atoms. It is of interest that a point contact contains a meager number of atoms, the effect of which is, however, noticeable in the measured characteristics. Thus, we can say that PCS is a unique method for studying of electron scattering by a few microscopic centers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akimenko A. I., Ponomarenko N. M., Yanson I. K., Janos S. and Reiffers M. (1984) Sov. Phys. Solid State 26 1374.Google Scholar
  2. Akimenko A. I., Ponomarenko N. M. and Yanson I. K. (1985) JETP Lett. 41 286; (1986) Sov. Phys. Solid State 28 615.Google Scholar
  3. Akimenko A. I. and Gudimenko V. A. Solid State Commun (1993) 87 925.ADSCrossRefGoogle Scholar
  4. Alekseev P. A., Sadikov I. P., Shitikov Yu. L. (1992) Phys. Stat. Sol. (b) 114 161.ADSCrossRefGoogle Scholar
  5. Andrei N. (1980) Phys. Rev. Lett 45 379; (1982) Phys Lett. A 87 299. Appelbaum J. A. (1967) Phys. Rev. 154 633.ADSGoogle Scholar
  6. Black J. L. (1981) in Glassy Metals ed. by H. J. Güntherodt and H. Back ( Springer Verlag, Berlin ) 167.Google Scholar
  7. Bruck E., Nowack A., Hohn N., Paulus E. and Freimuth A. (1986) Z. Phys. B. 63 155.ADSCrossRefGoogle Scholar
  8. B issian B., Frankowski I. and Wohlleben D. (1982) Phys. Rev. Lett. 49 1026.ADSCrossRefGoogle Scholar
  9. D’Ambrumenil N. and White R. M. (1982) J. Appl. Phys. 52 2052.CrossRefGoogle Scholar
  10. D’Lybell M. D. 1973 in Magnetism, ed. by G. Rado and H. Suhl ( Academic Press, New York ), 5 121–147.Google Scholar
  11. Duff A. M., Jansen A. G. M. and Wyder P. (1987) J. Phys. Cond. Matter 1 3157.ADSCrossRefGoogle Scholar
  12. Frankowski I. and Wachter P. (1982) Solid State Commun 41 577.ADSCrossRefGoogle Scholar
  13. Gignoux D. and Gomez-Sal J. C. (1985) J. Appl. Phys. 57 3125.ADSCrossRefGoogle Scholar
  14. Ja isen A. G. M., van Gelder A. P., Wyder P. and Strässler S. (1981) J. Phys. F: Metal Phys. 11 15.ADSCrossRefGoogle Scholar
  15. Kaiser A. B. and Doniach S. (1970) Intern. J. Magnetism 1 11.Google Scholar
  16. Keijsers R. J. P., Shklyarevskii O. I. and van Kempen H. (1995) Phys. Rev. 51 5628.ADSCrossRefGoogle Scholar
  17. Ke jsers R. J. P., Shklyarevskii O. I. and van Kempen H. (1996) Phys. Rev. iAett. 77 3411.ADSGoogle Scholar
  18. Ko esnichenko Yu. A., Omelyanchouk A. N. and Tuluzov I. G. (1996) Physica B 218 73.ADSCrossRefGoogle Scholar
  19. Koiesnichenko Yu. A., Omelyanchouk A. N., van der Post N. and Yanson I. K. (1997) Low Temp. Phys. 23 934.Google Scholar
  20. Kondo J. (1964) Progr. Theor. Phys. (Kyoto) 32 37.ADSCrossRefGoogle Scholar
  21. Kozub V. I. (1984) Sov. Phys. Solid State 26 1186.Google Scholar
  22. Kozub V. I. and Kulik I. O. (1986) Sov. Phys. - JETP 64 1332.Google Scholar
  23. Kozub V. I. and Rubin A. M. (1996) Physica B 218 64.ADSCrossRefGoogle Scholar
  24. Kuhl(I. O., Omelyanchouk A. N. and Tuluzov I. G. (1988) Sov. J. Low Temp. Phys. 14 82.Google Scholar
  25. McLean A. B. and Lozarich G. G. (1984) J. Phys. F: Met. Phys. 14 185.ADSCrossRefGoogle Scholar
  26. Lyskh A. A., Yanson I. K., Shklyarevskii O. I. and Naidyuk Yu. G. (1980) S Slid State Commun 35 987.ADSCrossRefGoogle Scholar
  27. Naidyuk Yu. G., Shklyarevskii O. I. and Yanson I. K. (1982) Soy. J. Low Temp. Phys., 8 362.Google Scholar
  28. Naic.yuk Yu. G., Reiffers M., Jansen A. G. M., Wyder P. and Yanson I. K., (1990) Soy. J. Low Temp. Phys. 16 522.Google Scholar
  29. Naicyuk Yu. G., Reiffers M., Jansen A. G. M., Wyder P., Yanson I. K., Gignoux D. and Schmitt D. (1992) Int. J. Mod. Phys. 7 222.ADSGoogle Scholar
  30. Naidyuk Yu. G., Reiffers M., Omelyanchouk A. N., Yanson I. K., Jansen A. G M. and Wyder P. (1994) Physica 1321 194–196.Google Scholar
  31. NowLck A., Wasser S., Schlabitz W., Kvitnitskaya O. E., and Fisk Z. (1997) Puys. Rev. B 56 14964.Google Scholar
  32. Ome yanchouk A. N. and Tuluzov I. G. (1980) Soy. J. Low Temp. Phys., 6 625.Google Scholar
  33. Omelyanchouk A. N. and Tuluzov I. G. (1985) Sov. J. Low Temp. Phys., 11 211.Google Scholar
  34. Ponomarenko N. M., Akimenko A. I., Yanson I. K., Burkhanov G. S., Chistyakov O. D. and Kol’chugina N. B. (1989) Sov. Phys. Solid State 31 1970.Google Scholar
  35. Rails K. S. and Buhrman R A. (1988) Phys. Rev. Lett. 60 2434.ADSCrossRefGoogle Scholar
  36. Ralph D. C. and Buhrman R. A. (1992) Phys. Rev. Lett. 69 2118.ADSCrossRefGoogle Scholar
  37. Ralph D. C., Ludwig A. W. W., von Delft J. and Buhrman R. A. (1994) Phys. Rev. Lett. 72 1064.ADSCrossRefGoogle Scholar
  38. Reiffers M., Naidyuk Yu. G., Jansen A. G. M., Wyder P., Yanson I. K., Gignoux D. and Schmitt D. (1989) Phys. Rev. Lett. 62 1560.ADSCrossRefGoogle Scholar
  39. Reiffers M., Salonova T., Gignoux D. and Schmitt D. (1999) Europhysics Lett. 45 520.ADSCrossRefGoogle Scholar
  40. Vladar K. and Zawadowski A. (1983) Phys. Rev. 28 1564.ADSCrossRefGoogle Scholar
  41. Wiegmann P. B. (1980) JETP Lett. 31 364.ADSGoogle Scholar
  42. Yanson I. K., Fisun V. V., Hesper R., Khotkevich A. V., Krans J. M., Mydosh J. A. and van Ruitenbeek J. M. (1995) Phys. Rev. Let. 74 302.ADSCrossRefGoogle Scholar
  43. Zarand G. and Udvardi L. (1996) Physica B 218 68.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2005

Authors and Affiliations

  • Yu. G. Naidyuk
    • 1
  • I. K. Yanson
    • 1
  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringNational Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations