Advertisement

Point contacts under irradiation

  • Yu. G. Naidyuk
  • I. K. Yanson
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 145)

Abstract

For a long time, point contacts have been used in microwave engineering as detectors, rectifiers, mixers, and harmonic signal sources. Such contacts are usually formed by means of thin wire pressed against a smooth semiconductor or metal surface. The wire represents a kind of antenna to couple in the radiation. A high-frequency current penetrates in the bulk of contact through this wire. An outline of the experimental configuration for the light or high-frequency irradiation of point contact is shown in Fig. 10.1. As the contact resistance is much smaller than the surrounding environment impedance, the high-frequency radiation produces a high-frequency current in the leads. Inasmuch as the I – V characteristic of a point contact deviates from the Ohms law, in other words, it is strongly nonlinear both in the thermal and the ballistic regime, the contacts independent on the current regimes can be used as a tool for rectifying, mixing of electromagnetic signals, and so on from the microwave up to optical frequencies. Consequently, a microscopic physics of processes in the contacts under the influence of irradiation evokes considerable interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balkashin 0 Phys. 18 1 Balkashin O. P (1992) Sov. J. Low Temp. Phys. 18 470.Google Scholar
  2. Balkashin 0 P and Kulik I. I. (1990) Sov. J. Low Temp. Phys. 16 166.Google Scholar
  3. Balkashin O P, Kulik I. I. and Moskalets M. V. (1992) Sov. J. Low Temp. 92.Google Scholar
  4. Balkashin O. P., Yanson I. K. and Pilipenko Yu. A. (1987) Soy. J. Low Temp. Phys. 13 222.Google Scholar
  5. Balkashin O. P., Yanson I. K. and Pilipenko Yu. A. (1991) Sov. J. Low Temp. Phys. 17 114.Google Scholar
  6. Balkashin O. P., Yanson I. K., Solov’jev V. S. and Krasnogorov A. Yu. (1982) Soy. Tech. Phys. 27 522.Google Scholar
  7. Kulik I. 0. (1985) JETP Lett. 41 370.Google Scholar
  8. Lysykh A. A., Duif A. M., Jansen A. G. M. and Wyder P. (1989) Phys. Rev. B 39 12560.Google Scholar
  9. Omelyanchouk A. N. and Tuluzov I. G. (1983) Soy. J. Low Temp. Phys. 9 142.Google Scholar
  10. van der Heijden R. W., Jansen A. G. M., Stoelinga J. H. M., Swartjes H. M. and Wyder P. (1980) Appl. Phys. Lett. 32 (2) 245.CrossRefGoogle Scholar
  11. van der Heijden R. W., Jansen A. G. M., Stoelinga J. H. M., Swartjes H. M. and Wyder P. (1984) J. Appl. Phys. 55 (4) 1003.ADSCrossRefGoogle Scholar
  12. van der Heijden R. W., Swartjes H. M. and Wyder P. (1984) Phys. Rev. B 30 3513.ADSCrossRefGoogle Scholar
  13. Yanson I. K., Balkashin O. P. and Pilipenko Yu. A. (1985) JETP Lett. 41 373.Google Scholar

Copyright information

© Springer Science+Business Media New York 2005

Authors and Affiliations

  • Yu. G. Naidyuk
    • 1
  • I. K. Yanson
    • 1
  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringNational Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations