Physics of New Laser Sources pp 281-315 | Cite as
Synchrotron Radiation Sources and Uses in the UV-VIS
Abstract
We call synchrotron radiation the radiation emitted by electrons moving along circular paths at relativistic speeds. The fact that electrons in circular trajectories radiate is well known since approximately one century. For example, this effect caused serious difficulties in the early, classical atomic theories. According to the Rutherford model, atoms could not be stable objects, for the electrons orbiting around the nuclei were radiating and, thus, losing their energy. Such a difficulty was overcome by N. Bohr, who postulated that the electrons could move on stable orbits, without radiating, provided the electron angular momentum were quantized in multiples of the constant h/2π.
Keywords
Photon Energy Synchrotron Radiation Spectral Distribution Storage Ring Liquid Nitrogen TemperaturePreview
Unable to display preview. Download preview PDF.
References
- 1.For the hystorical news on synchrotron radiation see, e.g., E. E. Kock, D. E. Eastman, and Y. Farge, in “Handbook in Synchrotron Radiation”, edited by E. E. Koch (North Holland, Amsterdam, 1983), Vol.la, p.1, and references therein.Google Scholar
- 2.The derivation of the basic equations of synchrotron radiation emission can be found in several textbooks. Here we refer to: S. Krinsky, M. L. Perlman, and R. E. Watson, in “Handbook in Synchrotron Radiation”, edited by E. E. Koch (North Holland, Amsterdam, 1983), Vol. la, p.65, and references therein.Google Scholar
- 3.D.H. Tomboulian and P.L. Hartman, Phys. Rev. 102, 1423 (1956).CrossRefGoogle Scholar
- 4.Y. Farge, Appl. Opt. 19, 4021 (1980).CrossRefGoogle Scholar
- 5.Activity Report of the I.N.F.N. National Laboratories in Frascati”, Report LNF-83/105 (1983), pag. 22 (in Italian).Google Scholar
- 6.D. J. Thompson and M. W. Poole, eds, “Europian Synchrotron Radiation Facility: The Machine.” ( The Europian Science Foundation, Strasbourg 1979 ).Google Scholar
- 7.R. Barbini and G. Vignola, Report LNF-80/12(R) (1980).Google Scholar
- 8.J. Freeouf, M. Erbudak, and D. E. Eastman, Solid State Commun. 13, 771 (1973).CrossRefGoogle Scholar
- 9.I. Lindau, P. Pianetta, K. Y. Yu, and W. E. Spicer, Phys. Rev. B 13, 492 (1976).CrossRefGoogle Scholar
- 10.P. Pianetta, I. Lindau, C. M. Garner, and W. E. Spicer, Phys. Rev. B 18, 2792 (1978).CrossRefGoogle Scholar
- 11.U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).CrossRefGoogle Scholar
- 12.S. T. Manson and J. W. Cooper, Phys. Rev. 165, 126 (1968).CrossRefGoogle Scholar
- 13.C. Guillot, Y. Ballu, J. Paignì, J. Lecante, K. P. Jain, P. Thiry, R. Pinchaux, Y. Petroff, and L. M. Falicov, Phys. Rev. Lett. 39, 1632 (1979).CrossRefGoogle Scholar
- 14.A. Fujimori and F. Minami, Phys. Rev. B 30, 957 (1984).CrossRefGoogle Scholar
- 15.R. Brec, G. Ouvrard, A. Louisy, J. Rouxel, and A. LeMehaute, Solid State Ionics 6, 185 (1982).CrossRefGoogle Scholar
- 16.J. Rouxel, P. Molinie, and L. H. Top, J. Power Sources 9, 345 (1983).CrossRefGoogle Scholar
- 17.M. S. Whittingham, Progr. Solid State Chem. 12, 41 (1978).CrossRefGoogle Scholar
- 18.A. LeMehaute, G. Ouvrard, R. Brec, and J. Rouxel, Mat. Res. Bull. 12, 1191 (1977).CrossRefGoogle Scholar
- 19.W. Klingen, G. Eulenberger, and H. Hahn, Naturwissenschaften 57, 88 (1970).CrossRefGoogle Scholar
- 20.F. S. Khumalo and H. P. Huges, Phys. Rev. B 23, 5375 (1981).CrossRefGoogle Scholar
- 21.M. Piacentini, F. S. Khumalo, C. G. Olson, J. W. Anderegg, and D. W. Lynch, Chem. Phys. 65, 289 (1982).CrossRefGoogle Scholar
- 22.M. Piacentini, F. S. Khumalo, G. Leveque, C. G. Olson, D. W. Lynch, Chem. Phys. 72, 61 (1982).CrossRefGoogle Scholar
- 23.G. K. Wertheim and S. Hufner, Phys. Rev. Lett. 28, 1028 (1972).CrossRefGoogle Scholar
- 24.Y. Sakisaka, T. Ishii, and T. Sagawa, J. Phys. Jpn. 36, 1372 (1974).CrossRefGoogle Scholar
- 25.M. Piacentini, V. Grasso, S. Santangelo, M. Fanfoni, S.Modesti, and A. Savoia, Nuovo Cimento D (1984) (in press).Google Scholar
- 26.M. Piacentini, V. Grasso, S. Santangelo, M. Fanfoni, S.Modesti, A. Svoia, Solid State Commun. 51, 467 (1984).CrossRefGoogle Scholar
- 27.The MnPS3 energy distribution curves are still unpublished. Those of FePS3 and NiPS3 are from Ref. 25.Google Scholar
- 28.F. Antonangeli, F. Bassani, F. Campolungo, A. Finazzi-Agrò, U. M. Grassano, E. Gratton, D. M. Jameson, M.Piacentini, N.Rosato, A. Savoia, G. Weber, and N. Zema, Report LNF-83/68(R) (1983).Google Scholar
- 29.R. D. Spencer and G. Weber, Ann. N. Y. Acad. Sci. 158, 361 (1969).CrossRefGoogle Scholar
- 30.E. Gratton and R. Lopez-Delgado, Nuovo Cimento 56B, 110 (1980).CrossRefGoogle Scholar
- 31.K. Teegarden and G. Baldini, Phys. Rev. 155, 896 (1967).CrossRefGoogle Scholar
- 32.P. H. Yuster and C. J. Delbecq, J. Chem. Phys. 21, 892 (1953).CrossRefGoogle Scholar
- 33.R. Edgerton and K. Teegarden, Phys. Rev. 129, 169 (1963).CrossRefGoogle Scholar
- 34.J. M. Donahue and K. Teegarden, J. Phys. Chem. Solids 29, 2141 (1968).CrossRefGoogle Scholar
- 35.Y. Farge and M. Fontana, “Electronic and Vibrational Properties of Point Defects in Ionic Crystals.” (North Holland, Amsterdam, 1979), pag. 196.Google Scholar
- 36.A. Ejiri, M. Watanabe, H. Saito, H. Yamashita, T. Shibaguchi, H. Nishida, and S. Sato, “3rd International Conference on Vacuum Ultraviolet Radiation Physics”, edited by Y. Nakai (Tokyo, 1971 ).Google Scholar
- 37.J. Ramamurti and K. Teegarden, Phys. Rev. 145, 698 (1966).CrossRefGoogle Scholar
- 38.F. Antonangeli, F. Fermi, U. M. Grassano, M. Piacentini, A. Scacco, and N. Zema, Solid State Commun. 49, 323 (1984).CrossRefGoogle Scholar