Physics of New Laser Sources pp 15-31 | Cite as
Excimer Lasers : Practical Excimer Laser Sources
Chapter
Abstract
Since their first demonstration1 in 1975 rare-gas-halide excimer lasers have been developed with amazing rapidity when compared with the development of previous systems. This new generation of lasers have been indeed described as an ultraviolet revolution and a new gas laser workhorse. The basic similarity in design to CO2 pulsed TEA lasers played a fundamental role in this development.
Keywords
Excimer Laser High Repetition Rate XeCl Laser Marx Generator Unstable Resonator
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.S.K.Searles, and G.A.Hart, Stimulated Emission at 281.8 nm from XeBr, Appl.Phys.Lett. 27: 243 (1975)CrossRefGoogle Scholar
- 2.J.Goldhar, W.R.Rapapart, and J.R.Murray, An Injection-Locked Unstable Resonator Rare Gas Halide Discharge Laser of Narrow Bandwidth and High Spatial Quality, IEEE J.Quantum Electron. QE16: 235 (1980)Google Scholar
- 3.G.Eden, R.Burnham, L.F.Champagne, T.Donohue, and N.Djeu, Visible and Ultraviolet Lasers, IEEE Spectrum, p. 50 (Apr.1979)Google Scholar
- 4.V.S.Letokhov, Laser Induced Chemical Processes, Phy.Today, p. 34 (Nov.1980)Google Scholar
- 5.O.Uchino, M.Maeda, M.Hirono, Application of Excimer Lasers to Laser-Radar Observations of the Upper Atmosphere, IEEE J. Quantum Electron. QE15: 1094 (1979)Google Scholar
- 6.T. J. Mc Kee, Excimer Laser. An Ultraviolet Revolution, Phy. Can. 36: 41 (1980)Google Scholar
- 7.T. J. Mc Kee, and J. Nilson, Excimer Applications, Laser Focus p. 51 (June 1982)Google Scholar
- 8.J. E. Velazco, and D. W. Setzer, Quenching Studies of Xe(3p2) metastable atoms, IEEE J. Quantum Electron. QE11: 708 (1975)Google Scholar
- 9.R. Burnham, H. W. Harris, and N. Djeu, Xenon Fluoride Laser Excitation by Transverse Electric Discharge, App. Phys. Lett. 28: 86 (1976)Google Scholar
- 10.J. A. Mangano, and H. J. Jacob, E-Beam Controlled Discharge Pumping of KrF Laser, App. Phys. Lett. 27: 495 (1975)Google Scholar
- 11.J. D. Daugherty, J. A. Mangano, and J. H. Jacob, Attachment Dominated Electron Beam Ionized Discharges, App. Phys. Lett. 28: 581 (1976)Google Scholar
- 12.W. L. Nighan,“Principles of Laser Plasmas”, G. Bakefi ed., chap. 7, p. 257, Wiley New York, (1976)Google Scholar
- 13.C. K. Rhodes Ed., Excimer Lasers, Topics App. Phy. 30, Springer (1979)Google Scholar
- 14.M. H. R. Hutchinson, Excimers and Excimer Lasers, App. Phys. 21: 95 (1980)Google Scholar
- 15.M. Rokni, and J. H. Jacob, Rare Gas Halides Lasers, in: “Applied Atomic Collision Physics” vol. 3, Academic Press (1982)Google Scholar
- 16.J. Goldhar, K. S. Jancaitis, and J. R. Murray, 850 J, 1050 ns narrow-band Krypton-Fluoride Laser, CLEO 84 Technical Digest ThB2 p. 136 (1984)Google Scholar
- 17.S. Singer, Recent Advances in KrF Systems Technology, CLEO 84 Technical Digest THB1, p. 136 (1984)Google Scholar
- 18.J. C. Hsia, A Model for UV Preionization in Electric-DischargePumped XeF and KrF Lasers, App. Phys. Lett. 30: 101 (1977)Google Scholar
- 19.C. B. Edwards, M. H. R. Hitchinson, D. J. Bradley, and M. D. Hutchinson, Repetitive Vacuum Ultraviolet Xenon Excimer Laser, Rev. Sci. Instr. 50: 1201 (1979)CrossRefGoogle Scholar
- 20.E. Fiorentino, T. Letardi, A. Marino, E. Sabia, M. Vannini, Electron Beam Sustained Discharge XeCl Laser. (To be published)Google Scholar
- 21.J. H. Jacob, Diffusion of Fast Electrons in the Presence of a Magnetic Field, App. Phys. Lett. 31: 252 (1977)Google Scholar
- 22.H. J. Seguin, and J. Tulip, Photoionization and Photosustained Lasers, App. Phys. Lett. 20: 414 (1972)Google Scholar
- 23.H. J. Seguin, J. Tulip, and D. Mc Keen, Ultraviolet Photoionization in TEA Lasers, IEEE J. Quantum Elect. QE10: 331 (1974)Google Scholar
- 24.R. C. Sze, and P. B. Scott, 1/4-J Discharge Pumped KrF Laser, Rev. Sci. Instr. 49: 772 (1978)CrossRefGoogle Scholar
- 25.R. C. Sze, and T. R. Loree, Experimental study of a KrF and ArF Discharge Laser, IEEE J. Quantum Electron. QE14: 944 (1978)Google Scholar
- 26.S. Sunida, K. Kunitamo, M. Kaburagi, M. Obara, and T. Tujioka, Effect of Preionization Uniformity on a KrF Laser, J. App. Phys. 52: 2682 (1981)CrossRefGoogle Scholar
- 27.S. Sumida, M. Obara, and T. Fujioka, X-Ray-Preionized High Pressure KrF Laser, App. Phys. Lett. 33: 913 (1978)Google Scholar
- 28.S. C. Lin, and J. I. Levotter, X-Ray Preionization of Electric Discharge Laser, App. Phys. Lett. 34: 505 (1979)Google Scholar
- 29.H. Shields, and A. J. Alcock, Short Pulse X-Ray Preionization of a High Pressure XeCl Gas Discharge Laser, Optics Comm. 42: 128 (1982)CrossRefGoogle Scholar
- 30.K. M. Dorikawa, M. Obara, and T. Fujioka, X-Ray Preionization of Rare-Gas-Halide Lasers, IEEE J. Quantum Electr. QE20: 198 (1984)Google Scholar
- 31.I. Smilanski, S. R. Byron, and T. R. Burkes, Electrical Excitation of an XeC1 Laser Using Magnetic Pulse Compression, App. Phys. Lett. 40 (7): 547 (1982)Google Scholar
- 32.R. R. Butcher, and T. S. Falhen, Magnetically Switched 150 W XeC1 Laser, CLEO 84 Technical Digest THP1, p. 202 (1984)Google Scholar
- 33.W. H. Lang Jr., M. J. Plummer, and E. A. Stappaarts, Efficient Discharge Pumping of an XeC1 Laser Using a High Voltage Pre-pulse, App. Phys. Lett. 43 ( 8): 735 (1983)Google Scholar
- 34.R. Buffa, P. Burlamacchi, M. Matera, H. F. Ranea Sandoval, and R. Salimbeni, High Repetition Rate Effects in XeC1 TEA Lasers, Optic. Comm. 40: 288 (1982)Google Scholar
- 35.R. S. Taylor, S. Watanabe, A. J. Alcock, K. E. Leopold, and P. B. Carkum, Operating Characteristics of a 5 J (5 J/liter) UV Preionized XeC1 Laser, IEEE J. Quantum Electron. QE17: Special Issue, Part. II, 82 (1981)Google Scholar
- 36.S. Watanabe, and A. Endoh, Wide Aperture Self Sustained Discharge KrF and XeC1 Lasers, App. Phys. Lett. 41: 799 (1982)Google Scholar
- 37.R. S. Taylor, P. B. Carkum, S. Watanabe, K. Leopold, and A. J. Alcock, Tune-Dependent Gain and Absorption in a 5 J UV Preionized XeCl Laser, IEEE J. Quantum. Electr. QE19: 416 (1983)Google Scholar
- 38.M. R. Osborn, M. H. R. Hutchinson, and P. W. Smith, Improvement in efficiency of X-Ray Preionized XeCl Lasers, CLEO 84 Technical Digest THP4, pag. 204 (1984)Google Scholar
- 39.R. S. Taylor, A. J. Alcock, and K. E. Leopold, Rail Gap Switches for High Output Energy Excimer Lasers, In: “Proc. 3rd IEEE Int. Pulsed Power Conference”, Albuquerque NM, p. 157 (1981)Google Scholar
- 40.W. Rogowski, Arch. Electrotech. 12: 1 (1923)CrossRefGoogle Scholar
- 41.T. Y. Chang, Improved Uniform Field Electrode Profiles for TEA Laser and High Voltage Applications, Rev. Sci. Instr. 44: 405 (1973)CrossRefGoogle Scholar
- 42.A. E. Stappaerts, A novel Design Method for Discharge Laser Electrode Profiles, App. Phys. Lett. 40 (12): 1018 (1982)Google Scholar
- 43.G. J. Ernst, Uniform Field Electrodes with Minimum Width, Opt. Comm. 49: 275 (1984)CrossRefGoogle Scholar
- 44.R. Tennant, Control of Contaminants in XeC1 Lasers, Laser Focus (Oct. 1981)Google Scholar
- 45.T. J. Mc Kee, J. Banic, A. Jares, and B. P. Stoicheff, IEEE J. Quantum Electron. QE15: 332 (1979)Google Scholar
- 46.R. Buffa, P. Burlamacchi, R. Salimbeni, and M. Matera, Efficient Spectral Narrowing of a XeC1 TEA Laser, J. Phys. D (App. Phys. ) 16: L125 (1983)CrossRefGoogle Scholar
- 47.D. B. Cohn and H. Komine, Long Pulse Excimer Laser Excited by Sequenced Discharges, IEEE J. Quantum Electron. QE19: 786 (1983)Google Scholar
- 48.S. Watanabe, M. Watanabe, and A. Endoh, Passive Mode Locking of a Long Pulse XeCl Laser, App. Phys. Lett. 43 (6): 533 (1983)Google Scholar
- 49.G. Reksten, T. Varghese, and W. Margulis, Active Mode Locking of a XeC1 Laser, App. Phys. Lett. 39 (2): 129 (1981)Google Scholar
- 50.I. V. Tomov, R. Fedosejevs, M. C. Richardson, W. J. Sarjeant, A. J. Alcock, andK. L. Lopold, Picosecond XeF Amplified Laser Pulses, App. Phys. Lett. 30: 146 (1977)Google Scholar
- 51.H. Egger, T. S. Luk, K. Boyer, D. F. Muller, H. Pummer, T. Srinivasan, C. K. Rhodes, Picosecond, Tinable ArF Excimer Laser Source, App. Phys. Lett. 41 (11): 1032 (1982)Google Scholar
- 52.H. L. Stower, and W. H. Steier, Locking of Laser Oscillations by Light Injection, App. Phys. Lett. 8: 91 (1966) and C. J. Buczek, R. J. Freiberg, and M. L. Skolnick, Laser Injection Locking, Proc. IEEE 16: 15411 (1973)Google Scholar
- 53.W. W. Chow, Theory of Line Narrowing and Frequency Selection in an Injection Locked Laser, IEEE J. Quantum Electron. QE19: 243 (1983)Google Scholar
- 54.I. J. Bigio, and M. Slatkine, Transform-Limited-Bandwidth Injection Locking of an XeF Laser with an Ar-Ion at 3511 A, Opt. Lett. 7: 19 (1982)CrossRefGoogle Scholar
- 55.O. L. Bourne, andA. J. Alcock, A High Power, Narrow Linewidth XeCl Oscillator, App. Phys. Lett. 42 (9): 777 (1983)CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1985