Tunable Short-Wavelength Laser Sources

  • B. P. Stoicheff
Part of the NATO ASI Series book series (NSSB)

Abstract

The availability of tunable laser radiation in the visible and infrared wavelength regions has made possible many important advances in physics, chemistry, and biology. At the present time, the ultraviolet (UV) region of the spectrum, and in particular the vacuum ultraviolet (VUV, from 200 to 100 nm) and extreme ultraviolet (XUV, from 100 to ~20 nm) regions lack tunable lasers. In fact, only a few lasers have been made to operate at these short wavelengths, in spite of considerable efforts being made in the past decade. The excimer lasers ArF (193 nm), Xe2 (~170 nm), and Ar2 (~120 nm), and the H2 laser (~110 nm) have been available for some time now, but these emit at discrete wavelengths or are tunable only over their relatively narrow bandwidths. More recent efforts have resulted in stimulated VUV emission by the anti-Stokes Raman process in I and Brl and by 2-photon excitation of H 2 2 , and in the XUV region by 4-photon excitation in Kr (~93 nm)3. Other techniques being explored inclLde recombination processes4 and excitation of ions5 such as Li+; and as we have learned at this school, in principle, the free-electron laser could operate at these short wavelengths.

Keywords

Radiative Lifetime Coherent Radiation Rovibronic Level Tunable Radiation Tunable Laser Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. White and D. Henderson, Tunable 178 nm Iodine anti-Stokes Raman laser, Opt. Lett. 7: 204 (1982)CrossRefGoogle Scholar
  2. J. C. White and D. Henderson, Anti-Stokes Raman laser emission at 149 nm in atomic Bromine, Opt. Lett. 8: 520 (1983).CrossRefGoogle Scholar
  3. 2.
    H. Egger, T. S. Luk, H. Pummer, T. Srinivasan, and C. K. Rhodes, Stimulated VUV emission following two-photon excitation of H2, in “Laser Spectroscopy VI”, H. P. Weber and W. Lüthy, eds., Springer-Verlag, Berlin (1983) p. 403.Google Scholar
  4. 3.
    T. Srinivasan, H. Egger, T. S. Luk, H. Pummer, and C. K. Rhodes, Stimulated extreme-ultraviolet emission at 93 nm in Krypton, in “Laser Spectroscopy VI”, H. P. Weber and W. Lüthy, eds., Springer-Verlag, Berlin (1983) p. 385.CrossRefGoogle Scholar
  5. 4.
    W. T. Silfvast and 0. R. Wood II, Recombination lasers in the vacuum ultraviolet, in “Laser Techniques for Extreme Ultraviolet Spectroscopy”, T. J. Mcllrath and R. R. Freeman, eds., American Institute of Physics, New York (1982) p. 128.Google Scholar
  6. 5.
    H. Mahr and U. Roeder, Use of metastable ions for a soft x-ray laser, Opt. Commun. 10: 227 (1974).CrossRefGoogle Scholar
  7. 6.
    J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Interaction between light waves in a nonlinear dielectric, Phys. Rev. 127: 1918 (1962).CrossRefGoogle Scholar
  8. 7.
    G. C. Bjorklund, Effects of focusing on third-order nonlinear processes in isotropic media, IEEE J. Quant. Electr. QE-11: 287 (1975).Google Scholar
  9. 8.
    R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, Tunable coherent vacuum-ultraviolet generation in atomic vapors, Phys. Rev. Lett. 32: 343 (1974).CrossRefGoogle Scholar
  10. 9.
    C. R. Vidal, Coherent VUV sources for high resolution spectroscopy, Appl. Opt. 19: 3397 (1980).Google Scholar
  11. 10.
    W. Jamroz and B. P. Stoicheff, Generation of tunable coherent vacuum-ultraviolet radiation, in “Progress in Optics XX”, E. Wolf, ed., North-Holland, Amsterdam (1983) p. 325.CrossRefGoogle Scholar
  12. 11.
    G. H. C. New and J. F. Ward, Optical third-harmonic generation in gases, Phys. Rev. Lett. 19: 556 (1967).CrossRefGoogle Scholar
  13. 12.
    R. B. Miles and S. E. Harris, Proposed third-harmonic generation in phase-matched metal vapors, Appl. Phys. Lett. 19: 385 (1971): Optical third-harmonic generation in alkali metal vapors, IEEE J. Quant. Electr. QE-9: 470 (1973).Google Scholar
  14. 13.
    J. Bokor, P. H. Bucksbaum, and R. R. Freeman, Generation of 35.5 nm coherent radiation, Opt. Lett. 8: 217 (1983).CrossRefGoogle Scholar
  15. 14.
    A. H. Kung, Third-harmonic generation in a pulsed supersonic jet of Xenon, Opt. Lett. 8: 24 (1983).CrossRefGoogle Scholar
  16. 15.
    S. C. Wallace and G. Zdasiuk, High efficiency four-wave sum-mixing in Mg at 140 nm. Appl. Phys. Lett. 28: 449 (1976).CrossRefGoogle Scholar
  17. 16.
    J. R. Banic, R. H. Lipson, T. Efthimiopoulos, and B. P.Stoicheff, Radiative lifetimes of Bt2A state (v’ = 0….8) of NO obtained by VUV laser excitation, Opt. Lett. 6: 461 (1981).CrossRefGoogle Scholar
  18. 17.
    T. J. McKee, B. P. Stoicheff, and S. C. Wallace, Tunable, I) coherent radiation in the Lyman-a region (1210–1290 A) using Mg vapor, Opt. Lett. 3: 207 (1978).CrossRefGoogle Scholar
  19. 18.
    W. Jamroz, P. E. LaRocque, and B. P. Stoicheff, Generation of continuously tunable coherent VUV radiation (140 to 106 nm) in Zn vapor, Opt. Lett. 7: 617 (1982).CrossRefGoogle Scholar
  20. 19.
    R. Mahon and F. S. Tomkins, Frequency up-conversion to the VUV in Hg vapor, IEEE J. Quant. Electr. QE-18: 913 (1982).Google Scholar
  21. 20.
    R. R. Freeman, R. M. Jopson, and J. Bokor, Generation of coherent and incoherent radiation below 100 nm in Hg, in “Laser Techniques for Extreme Ultraviolet Spectroscopy”, T. J. Mcllrath and R. R. Freeman, eds., American Institute of Physics, New York (1982) p. 422.Google Scholar
  22. 21.
    R. Hilbig and R. Wallenstein, Resonant sum and difference frequency mixing in Hg, IEEE J. Quant. Electr. QE-19: 1759 (1983).Google Scholar
  23. 22.
    P. Herman and B. P. Stoicheff, Generation of VUV radiation at 120 to 104 nm by four-wave sum-mixing in Hg vapor, unpublished (1984).Google Scholar
  24. 23.
    A. H. Kung, J. F. Young, G. C. Bjorklund, and S. E. Harris, Generation of vacuum ultraviolet radiation in phase-matched Cd vapor, Phys. Rev. Lett. 29: 985 (1972).CrossRefGoogle Scholar
  25. 24.
    A. H. Kung, Generation of tunable picosecond VUV radiation, Appl. Phys. Lett. 25: 653 (1974).Google Scholar
  26. 25.
    R. Hilbig and R. Wallenstein, Narrowband tunable VUV radiation generated by nonresonant sum-and difference-frequency mixing in Xe and Kr, Appl. Opt. 21: 913 (1982); Enhanced production of tunable VUV radiation by phase-matched frequency tripling in Krypton and Xenon, IEEE J. Quant. Electr. QE-17: 1566 (1981).Google Scholar
  27. 26.
    J. Reintjes, Frequency mixing in the extreme ultraviolet, Appl. Opt. 19: 3889 (1980); J. Reintjes, C. Y. She, and R. C. Eckardt, Generation of coherent radiation in the XUV by fifth-and seventh-order frequency conversion in rare gases, IEEE J. Quant. Electr. QE-14: 581 (1978).Google Scholar
  28. 27.
    H. Egger, T. Srinivasan, K. Hohla, H. Scheingraber, C. R. Vidal, H. Pummer, and C. K. Rhodes, A tunable, ultrahigh-spectralbrightness ArF* excimer laser source, Appl. Phys. Lett. 39: 37 (1981).Google Scholar
  29. 28.
    H. Egger, R. T. Hawkins, J. Bokor, H. Pummer, M. Rothschild, and C. K. Rhodes, Generation of high-spectral-brightness tunable XUV radiation at 83 nm, Opt. Lett. 5: 282 (1980).CrossRefGoogle Scholar
  30. 29.
    E. E. Marinero, C. T. Rettner, R. N. Zare, and A. H. Kung, Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm), Chem. Phys. Lett. 95: 486 (1983).CrossRefGoogle Scholar
  31. 30.
    D. Cotter, Tunable narrow-band coherent VUV source for the Lyman-alpha region, Opt. Commun. 31: 397 (1979).CrossRefGoogle Scholar
  32. 31.
    R. Hilbig, A. Lago, and R. Wallenstein, Tunable XUV radiation generated by nonresonant frequency tripling in Neon, Opt. Commun. 49: 297 (1984).CrossRefGoogle Scholar
  33. 32.
    R. R. Freeman, G. C. Bjorklund, N. P. Economou, P. F. Liao, and J. E. Bjorkholm, Generation of cw VUV coherent radiation by four-wave sum frequency mixing in Sr vapor, Appl. Phys. Lett. 33: 739 (1978).Google Scholar
  34. 33.
    A. Timmerman and R. Wallenstein, Generation of tunable single-frequency continuous-wave coherent vacuum-ultravioletradiation, Opt. Lett. 8: 517 (1983).CrossRefGoogle Scholar
  35. 34.
    T. J. McIlrath and R. R. Freeman, “Laser Techniques for Extreme Ultraviolet Spectroscopy”, Am. Inst. Physics, New York (1982).Google Scholar
  36. 35.
    M. Rothschild, H. Egger, R. T. Hawkins, J. Bokor, H. Pummer, and C. K. Rhodes, High-resolution spectroscopy of molecular Hydrogen in the extreme ultraviolet region, Phys. Rev. A23: 206 (1981).CrossRefGoogle Scholar
  37. 36.
    F. J. Northrup, J. C. Polanyi, S. C. Wallace and J. M. Williamson, VUV laser-induced fluorescence of molecular Hydrogen, Chem. Phys. Lett. 105: 34 (1984).CrossRefGoogle Scholar
  38. 37.
    J. W. Hepburn, D. Klimek, K. Liu, R. G. Macdonald, F. J. Northrup, and J. C. Polanyi, Reactive cross section as a function of reagent energy. II. H(D) + HBr(DBr)-}H2(HD,D2) + Br, J. Chem. Phys. 74: 6226 (1981).CrossRefGoogle Scholar
  39. 38.
    P. Ho and A. V. Smith, Rotationally excited CO from formaldehyde photoionization, Chem. Phys. Lett. 90: 407 (1982).CrossRefGoogle Scholar
  40. 39.
    J. W. Hepburn, F. J. Northrup, G. L. Ogram, J. C. Polanyi, and J. M. Williamson, Rotationally inelastic scattering from surfaces. C0(g) + LiF(001), Chem. Phys. Lett. 90: 407 (1982).CrossRefGoogle Scholar
  41. 40.
    A. C. Provorov, B. P. Stoicheff, and S. C. Wallace, Fluorescence studies in CO with tunable VUV laser radiation, J. Chem. Phys. 67: 5393 (1977).CrossRefGoogle Scholar
  42. 41.
    M. Maeda and B. P. Stoicheff, Measured radiative lifetimes of rovibronic levels in the A’H(v = 0) state of CO and comparison with theory, in “Laser Techniques in the Extreme Ultraviolet”, S. E. Harris and T. B. Lucatorto, eds., Amer. Inst. Physics, New York (1984).Google Scholar
  43. 42.
    R. H. Lipson, P. E. LaRocque, and B. P. Stoicheff, Vacuum-ultraviolet laser-excited spectra of Xe2, Opt. Lett. 9: 402 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • B. P. Stoicheff
    • 1
  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations