The Chemical Analysis of Particulate Carbon

  • M. L. Lee
  • K. D. Bartle

Abstract

Considerable information concerning the formation of particulate carbon during combustion can be obtained by a detailed analysis of the organic compounds that are associated with the particles. As combustion products cool and are expelled from the combustion system, most organic vapors are adsorbed on the carbon particles. Characterization of these adsorbed materials is important in understanding the effects of different reaction conditions on the formation of particulate carbon.

Generally speaking, there are two approaches to the chemical analysis of particulate carbon. The particles can be probed directly by spectroscopic techniques or extracted with suitable solvents before analysis. The latter approach generally yields more useful information because the extracted sample can be resolved into a number of relatively pure components using modern chromatographic methods prior to qualitative and quantitative measurements.

High resolution gas chromatography represents the most powerful approach for resolving complex organic mixtures, and can be used effectively in the analysis of combustion products. The technique, however, is limited to the analysis of the more volatile sample components. High performance liquid chromatography can extend this range to higher molecular weight species. Polycyclic aromatic compounds containing up to ten and eleven rings have been successfully chromatographed using this technique. New approaches including supercritical fluid chromatography and field-flow fractionation offer the potential of extending chemical separations to even larger compounds.

This paper describes the different approaches to the chemical analysis of particulate carbon and compares the chemical compositions of particulate carbon formed in a variety of different combustion systems.

Keywords

High Performance Liquid Chromatography Carbon Black Combustion Product Particulate Carbon Soot Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Dipple, in “Chemical Carcinogens,” C. E. Searle (ed.), American Chemical Society, ACS Monograph No. 173, Washington, D.C., (1976), p. 245.Google Scholar
  2. 2.
    J. D. Bittner and J. B. Howard, Prog. Astronaut. Aeronaut., Vol. 62 (1978), p. 335.Google Scholar
  3. 3.
    B. D. Crittenden and R. Long, in “Carcinogenesis —A Comprehensive Survey: Polynuclear Aromatic Hydrocarbons,” R. Freudenthal and P. W. Jones (eds.), Raven Press, New York, (1976), p. 209.Google Scholar
  4. 4.
    Biologic Effects of Atmospheric Pollutants: Particulate Polycyclic Organic Matter,“ National Academy of Sciences, Washington, D.C., (1972).Google Scholar
  5. 5.
    D. F. S. Natusch and B. A. Tomkins, in “Carcinogenesis —A Comprehensive Survey: Polynuclear Aromatic Hydrocarbons,” P. W. Jones and R. I. Freudenthal (eds.), Raven Press, New York, (1978), p. 145.Google Scholar
  6. 6.
    J. F. Ferraro and L. J. Basile (eds.), “Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems,” Academic Press, New York, (1978).Google Scholar
  7. 7.
    P. C. Painter and M. M. Coleman, International Laboratory, April (1980), p. 17.Google Scholar
  8. 8.
    M. G. Rockley, Appl. Spectroscop., Vol. 34 (1980), p. 405.Google Scholar
  9. 9.
    J. D. Low and G. A. Parodi, Appl. Spectroscop., Vol. 34 (1980), p. 76.Google Scholar
  10. 10.
    M. G. Rockley and J. P. Devlin, Appl. Spectroscop., Vol. 34 (1980), p. 407.Google Scholar
  11. 11.
    T. Vo-Dinh, F. Lue Yen, and J. D. Winefordner, Anal. Chem., 48 (1976), p. 1186;Google Scholar
  12. T. Vo-Dinh, F. Lue Yen, and J. D. Winefordner, Talanta, Vol. 24 (1977), p. 146.Google Scholar
  13. 12.
    C. D. Ford and R. J. Hurtubise, Anal. Chem., Vol. 52 (1980), p. 656.Google Scholar
  14. 13.
    T. W. Stanley, J. E. Meeker, and M. J. Morgan, Environ. Sci. Technol., Vol. 1 (1967), p. 927.Google Scholar
  15. 14.
    F. S.C. Lee, T.J. Prater, and F. Ferris, in “PolynuclearAromatic Hydrocarbons,” P. W. Jones and P. Leber (eds.), Ann Arbor Science, Ann Arbor, (1979), p. 83.Google Scholar
  16. 15.
    R. C. Pierce and M. Katz, Anal. Chem., Vol. 47 (1975), p. 1743.Google Scholar
  17. 16.
    M. L. Lee and R. A. Hites, Anal. Chem., Vol. 48 (1976), p. 1890.Google Scholar
  18. 17.
    A. Gold, Anal. Chem., Vol. 47 (1975), p. 1469.Google Scholar
  19. 18.
    W. L. Fitch, E. T. Everhart, and D. H. Smith, Anal. Chem., Vol. 50 (1978), p. 2123.Google Scholar
  20. 19.
    W. L. Fitch and D. H. Smith, Environ. Sci. Technol., Vol. 13 (1979), p. 341.Google Scholar
  21. 20.
    K. Wettig, A. Ya. Khesina, A. B. Linnik, L. V. Krivosheva, and W. H. Doerre, Staub, Reinhaltung Luft, Vol. 29 (1969), p. 21.Google Scholar
  22. 21.
    H. L. Falk and P. E. Steiner, Cancer Res., Vol. 12 (1952), p. 30, 60.Google Scholar
  23. 22.
    W. H. Griest, J. E. Caton, M. R. Guerin, L. B. Yeatts, Jr., and C. E. Higgins, Anal. Chem., Vol. 52 (1980), p. 199.Google Scholar
  24. 23.
    G. Chalot, M. Castegnaro, J. L. Roche, R. Fontagnons, and P. Obatan, Anal. Chim. Acta, Vol. 53 (1971), p. 259.Google Scholar
  25. 24.
    C. Golden and E. Sawicki, Int. J. Environ. Anal. Chem., Vol. 4 (1975), p. 9.Google Scholar
  26. 25.
    G. T. Todd, Diss. Abs. Internat. (B), Vol. 31 (1971), p. 6671.Google Scholar
  27. 26.
    K. D. Bartle, M. L. Lee, and S. A. Wise, Chem. Soc. Rev., in press.Google Scholar
  28. 27.
    J. C. Brown, M. Edelson, and G. J. Small, Anal. Chem., Vol. 50 (1978), p. 1394.Google Scholar
  29. 28.
    E. V. Shpol’skii and T. N. Bolotnikova, Pure Appl. Chem., Vol. 37 (1974), p. 183.Google Scholar
  30. 29.
    A. Colmsjö and U. Stenberg, Anal. Chem., Vol. 51 (1979), p. 145.Google Scholar
  31. 30.
    J. A. G. Drake, D. W. Jones, B. S. Causey, and G. F. Kirkbright, Fuel, Vol. 57 (1978), p. 663.Google Scholar
  32. 31.
    J. Jager, Atmos. Environ., Vol. 2 (1968), p. 293.Google Scholar
  33. 32.
    J. R. Maple, E. L. Wehry, and G. Mamontov, Anal. Chem., Vol. 52 (1980), p. 920Google Scholar
  34. 33.
    Y. Yang, A. P. D’Silva, V.A. Fassel, and M. Iles, Anal. Chem., Vol. 52 (1980),p. 1350.Google Scholar
  35. 34.
    E. L. Wehry and G. Mamontov, Anal. Chem., Vol. 51 (1979), p. 643A.Google Scholar
  36. 35.
    L. V. S. Hood and J. D. Winefordner, Anal. Chim. Acta, Vol. 42 (1968), p. 199.Google Scholar
  37. 36.
    M. Zander, U. Breymann, H. Dreeskamp, and E. Koch, Z. Naturforsch., Vol. 32a (1977), p. 1561.Google Scholar
  38. 37.
    U. Breymann, H. Dreeskamp, E. Koch, and M. Zander, Fres. Z. Anal. Chem., Vol. 293 (1978), p. 208.Google Scholar
  39. 38.
    J. H. Richardson and M. E. Ando, Anal. Chem., Vol. 49 (1977), p. 955.Google Scholar
  40. 39.
    R. B. Dickinson, Jr., and E. L. Wehry, Anal. Chem., Vol. 51 (1979), p. 776.Google Scholar
  41. 40.
    Y. Talmi, D. C. Baker, J. R. Jadamec, and W. A. Saner, Anal. Chem., Vol. 50 (1978), p. 936A.Google Scholar
  42. 41.
    G. Talsky, L. Mayring, and H. Kreuzer, Angew. Chem. Internat. Ed., Vol. 17 (1978), p. 785.Google Scholar
  43. 42.
    T. C. O’Haver and W. M. Parks, Anal. Chem., Vol. 46 (1974), p. 1886.Google Scholar
  44. 43.
    J. B. F. Lloyd, Nature (London), Vol. 231 (1971), p. 64;Google Scholar
  45. J. B. F. Lloyd, Analyst, Vol. 99 (1974), p. 729.Google Scholar
  46. 44.
    T. Vo-Dinh, Anal. Chem., Vol. 50 (1978), p. 396.Google Scholar
  47. 45.
    R. A. Brown, Anal. Chem., Vol. 23 (1951), p. 430.Google Scholar
  48. 46.
    J. L. Shultz, A. G. Sharkey, Jr., and R. A. Friedel, Biomed. Mass Spectrom., Vol. 1 (1974), p. 137.Google Scholar
  49. 47.
    W. Giger and M. Blumer, Anal. Chem., Vol. 46 (1974), p. 1663.Google Scholar
  50. 48.
    D. Schuetzle, Biomed. Mass Spectrom., Vol. 2 (1975), p. 288.Google Scholar
  51. 49.
    R. A. Hiles and W. G. Biemann, Advan. Chem. Ser., Vol. 147 (1975), p. 188.Google Scholar
  52. 50.
    M. L. Lee, G. P. Prado, J. B. Howard, and R. A. Hires, Biomed. Mass Spectrom., Vol. 4 (1977), p. 182.Google Scholar
  53. 51.
    M. Blumer, T. Dorsey, and J. Sass, Science, Vol. 195 (1977), p. 283.Google Scholar
  54. 52.
    R. G. Cooks (ed.), “Collision Spectroscopy,” Plenum Press, New York, (1978).Google Scholar
  55. 53.
    B. Shushan, S. H. Safe, and R. K. Boyd, Anal. Chem., Vol. 51 (1979), p. 156.Google Scholar
  56. 54.
    S. E. Scheppele, P. L. Grizzle, G. J. Greenwood, T. D. Marriott, and N. B. Perreira, Anal. Chem., Vol. 48 (1976), p. 2105.Google Scholar
  57. 55.
    D. F. Barofsky, E. Barofsky, and R. Held-Aigner, Adv. Mass Spectrom., Vol. 7 (1978), p. 109.Google Scholar
  58. 56.
    I. R. Dunkin, Chem. Soc. Rev., Vol. 9 (1980), p. I.Google Scholar
  59. 57.
    E. L. Wehry, G. Mamantov, R. R. Kemmerer, H. O. Brotherton, and R. C. Stroupe, in “Carcinogenesis-A Comprehensive Survey: Polynuclear Aromatic Hydrocarbons,” R. Freudenthal and P. W. Jones (eds.), Raven Press, New York, (1976), p. 299.Google Scholar
  60. 58.
    M. L. Lee, M. Novotny, and K. D. Bartle, “Analytical Chemistry of Polycyclic Aromatic Compounds,” Academic Press, in press.Google Scholar
  61. 59.
    S. A. Wise, W. J. Bonnett, and W. E. May, in “Polynuclear Aromatic Hydrocarbons: Chemistry and Biological Effects,” A. Bjorseth and A. J. Dennis (eds.), Battelle Press, Columbus, Ohio, (1980), p. 791.Google Scholar
  62. 60.
    T. Nielson, J. Chromatogr., Vol. 170 (1979), p. 147.Google Scholar
  63. 61.
    S. A. Wise, W. J. Bonnett, F. R. Guenther, and W. E. May, J. Chromatogr. Sci., in press.Google Scholar
  64. 62.
    G.-P. Blamer and M. Zander, Z. Anal. Chem., Vol. 288 (1977), p. 277.Google Scholar
  65. 63.
    E. P. Lankmayr and K. Müller, J. Chromatogr., Vol. 170 (1979), p. 139.Google Scholar
  66. 64.
    J. Chmielowiec and A. E. George, Anal. Chem., Vol. 52 (1980), p. 1154.Google Scholar
  67. 65.
    D. E. Seizinger, Trends in Fluorescence, Vol. 1 (1978), p. 9.Google Scholar
  68. 66.
    D. Fechner and B. Seifert, Z. Anal. Chem., Vol. 292 (1978), p. 199.Google Scholar
  69. 67.
    R. G. Christensen and W. E. May, J. Liquid Chromatogr., Vol. 1 (1978), p. 385.Google Scholar
  70. 68.
    G.-P. Blumer and M. Zander, Z. Anal. Chem., Vol. 296 (1979), p. 409.Google Scholar
  71. 69.
    P. L. Konash, W. E. May, and S. A. Wise, Washington Chromatography Discussion Group Meeting, Gaithersburg, Maryland, May 21, (1980).Google Scholar
  72. 70.
    J. R. Jadamec, W. A. Saner, and Y. Talmi, Anal. Chem., Vol. 49 (1977), p. 316.Google Scholar
  73. 71.
    D. C. Shelly, W. A. Ilger, M. P. Fogarty, and I. M. Warner, Altex Chromatogram, Vol. 3 (1) (1979), p. 4.Google Scholar
  74. 72.
    P. J. Arpino and G. Guiochon, Anal. Chem., Vol. 51 (1979), p. 682A.Google Scholar
  75. 73.
    D. E. Games, Proc. Anal. Soc., April, (1980), p. 110.Google Scholar
  76. 74.
    W. H. McFadden, J. Chromatogr. Sci., Vol. 18 (1980), p. 97.Google Scholar
  77. 75.
    G.-P. Blamer, R. Thorns, and M. Zander, Erdöl Kohle Erdgas Petrochem., Vol. 31 (1978), p. 197.Google Scholar
  78. 76.
    G.-P. Blumer and M. Zander, Compendium 78/79 Supplement to Erdöl Kohle Erdgas Petrochem., (1978), p. 1472.Google Scholar
  79. 77.
    D. Felscher and J. Stein, Z. Chem., Vol. 19 (1979), p. 303.Google Scholar
  80. 78.
    P. A. Peaden, M. L. Lee, Y. Hirata, and M. Novotny, Anal. Chem., Vol. 52 (1980), p. 2268.Google Scholar
  81. 79.
    R. C. Lao, R. S. Thomas, H. Oja, and L. Dubois, Anal. Chem., Vol. 45 (1973), p. 908.Google Scholar
  82. 80.
    R. C. Lao, R. S. Thomas, and J. L. Monkman, J. Chromatogr., Vol. 112 (1975), p. 681.Google Scholar
  83. 81.
    A. Hase, P. H. Lin, and R. A. Hiles, in “Carcinogenesis-A Comprehensive Survey: Polynuclear Aromatic Hydrocarbons,” R. Freudenthal and P. W. Jones (eds.), Raven Press, New York, (1976), p. 435.Google Scholar
  84. 82.
    G. Grimmer, H. Böhnke, and A. Hildebrandt, Z. Anal. Chem., Vol. 279 (1976), p. 139.Google Scholar
  85. 83.
    M. L. Lee and B. W. Wright, J. Chromatogr. Sci., Vol. 18 (1980), p. 345.Google Scholar
  86. 84.
    G. M. Janini, K. Johnston, and W. L. Zielinski, Jr., Anal. Chem., Vol. 47 (1975), p. 670.Google Scholar
  87. 85.
    G. M. Janini, G. M. Muschik, and W. L. Zielinski, Jr., Anal. Chem., Vol. 48 (1976), p. 809.Google Scholar
  88. 86.
    G. M. Janini, G. M. Muschik, J. A. Schroer, and W. L. Zielinski, Jr., Anal. Chem., Vol. 48 (1976), p. 1974.Google Scholar
  89. 87.
    R. J. Laub, W. L. Roberts, and C. A. Smith, HRC & CC, Vol. 3 (1980), p. 355.Google Scholar
  90. 88.
    M. L. Lee, M. Novotny, and K. D. Bartle, Anal. Chem., Vol. 48 (1976), p. 1566.Google Scholar
  91. 89.
    A. Bjbrseth, Anal. Chim. Acta, Vol. 94 (1977), p. 21.Google Scholar
  92. 90.
    W. Giger and C. Schaffner, Anal. Chem., Vol. 50 (1978), p. 243.Google Scholar
  93. 91.
    A. Bjdrseth, in “Carcinogenesis — A Comprehensive Survey: Polynuclear Aromatic Hydrocarbons,” P. W. Jones and R. I. Freudenthal (eds.), Raven Press, New York, (1978), p. 75.Google Scholar
  94. 92.
    A. Bjdirseth and G. Eklund, Anal, Chim, Acta, Vol. 105 (1979), p. 119.Google Scholar
  95. 93.
    T. Doran and N. G. McTaggart, J. Chromatogr. Sci., Vol. 12 (1974), p. 715.Google Scholar
  96. 94.
    H. Beernaert, J. Chromatogr., Vol. 173 (1979), p. 109.Google Scholar
  97. 95.
    M. L. Lee, D. L. Vassilaros, C. M. White, and M. Novotny, Anal. Chem., Vol. 51 (1979), p. 768.Google Scholar
  98. 96.
    V. Cantuti, G. P. Cartoni, A. Liberti, and A. G. Torri, J. Chromatogr., Vol. 17 (1965), p. 60.Google Scholar
  99. 97.
    A. Bjbrseth and G. Eklund, HRC & CC, Vol. 2 (1979), p. 22.Google Scholar
  100. 98.
    E. P. Grimsrud, D. A. Miller, R. G. Stebbins, and S. H. Kim, J. Chromatogr., Vol. 197 (1980), p. 51.Google Scholar
  101. 99.
    J. N. Driscoll, J. Ford, L. F. Jaramillo, and E. T. Gruber, J. Chromatogr., Vol. 158 (1978), p. 171.Google Scholar
  102. 100.
    C. M. Klimcak and J. E. Wessel, Anal. Chem., Vol. 52 (1980), p. 1233.Google Scholar
  103. 101.
    M. Novotny, F. J. Schwende, M. J. Hartigan, and J. E. Purcell, Anal. Chem., Vol. 52 (1980), p. 736.Google Scholar
  104. 102.
    H. P. Burchfield, E. E. Green, R. J. Wheeler, and S. M. Billedeau, J. Chromatogr., Vol. 99 (1974), p. 697.Google Scholar
  105. 103.
    D. J. Freed and L. R. Faulkner, Anal. Chem., Vol. 44 (1972), p. 1194.Google Scholar
  106. 104.
    R. P. Cooney and J. D. Winefordner, Anal. Chem., Vol. 49 (1977), p. 1057.Google Scholar
  107. 105.
    S. G. Wakeham, Env. Sci. Technol., Vol. 13 (1979), p. 1119.Google Scholar
  108. 106.
    B. Wenzel and R. Aiken, J. Chromatogr. Sci., Vol. 17 (1979), p. 503.Google Scholar
  109. 107.
    M. L. Lee, C. Willey, R. N. Castle, and C. M. White, in “Polynuclear Aromatic Hydrocarbons: Chemistry and Biological Effects,” A. Bjcbrseth and A. J. Dennis, (eds.) Battelle Press, Columbus, Ohio, (1980), p. 59.Google Scholar
  110. 108.
    M. L. Lee and R. A. Hiles, J. Am. Chem. Soc., Vol. 99 (1977), p. 2008.Google Scholar
  111. 109.
    M. L. Lee, D. L. Vassilaros, W. S. Pipkin, and W. L. Sorensen, in “Trace Organic Analysis: A New Frontier in Analytical Chemistry,” NBS Special Publication 519, U.S. Government Printing Office, Washington, D.C., (1979), p. 731.Google Scholar
  112. 110.
    D. F. Hunt, C. N. McEwen, and T. M. Harvey, Anal. Chem., Vol. 47 (1975), p. 1730.Google Scholar
  113. 111.
    D. F. Hunt, G. C. Stafford, Jr., F. W. Crow, and J. W. Russell, Anal. Chem., Vol. 48 (1976), p. 2098.Google Scholar
  114. 112.
    D. F. Hunt and S. K. Sethi, in “High Performance Mass Spectrometry: Chemical Applications,” M. L. Gross (ed.), ACS Symp. Ser., 70, American Chemical Society, Washington, D.C., (1978), p. 150.Google Scholar
  115. 113.
    G. P. Prado, M. L. Lee, R. A. Hites, D. P. Hoult, and J. B. Howard, “Sixteenth Symposium (International) on Combustion”, (1977), p. 649.Google Scholar
  116. 114.
    L. D. Hansen, L. R. Phillips, N. F. Mangelson, and M. L. Lee, Fuel, Vol. 59 (1980), p. 323.Google Scholar
  117. 115.
    L. Wallcave, D. L. Nagel, J. W. Smith, R. D. Waniska, Environ. Sci. Technol., Vol. 9 (1975), p. 143.Google Scholar
  118. 116.
    J. N. Pitts, Jr., K. A. Van Cauwenberghe, D. Grosjean, J. P. Schmid, D. Fitz, W. L. Belser, Jr., G. B. Knudson, and P. M. Hynds, Science, Vol. 202 (1978), p. 515.Google Scholar
  119. 117.
    R. C. Pierce and M. Katz, Environ. Sci. Technol., Vol. 9 (1975), p. 347.Google Scholar
  120. 118.
    R. C. Pierce and M. Katz, Environ. Sci. Technol., Vol. 10 (1976), p. 45.Google Scholar
  121. 119.
    W. Cantreels and K. Van Cauirenberghe, J. Chromatogr., Vol. 131 (1977), p. 253.Google Scholar
  122. 120.
    J. N. Pitts, Jr., Philos. Trans. R. Soc. London Ser. A, Vol. 290 (1979), p. 551.Google Scholar
  123. 121.
    F. S.-C. Lee, T. M. Harvey, T. J. Prater, M. C. Paputa, and D. Schuetzle, Proc. ASTM Symp. on Sampling and Analysis of Toxic Organics in Source-Related Atmosphere, Boulder, Colorado, (1980), in press.Google Scholar
  124. 122.
    H. S. Rosenkranz, E. C. McCoy, D. R. Sanders, M.Butler, D. K. Kiriazides, and R. M.rmelstein, Science, Vol. 209 (1980), p. 1039.Google Scholar
  125. 123.
    I. C. Lewis and B. A. Petro, J. Polymer Sci., Polym. Chem. Ed., Vol. 14 (1976), p. 1975.Google Scholar
  126. 124.
    R. E. Jentoft and T. H. Gouw, Anal. Chem., Vol. 48 (1976), p. 2195.Google Scholar
  127. 125.
    E. Klesper, Angew. Chem. Int. Ed. Engl., Vol. 17 (1978), p. 738.Google Scholar
  128. 126.
    J. C. Giddings, J. Chromatogr., Vol. 125 (1976), p. 3.Google Scholar
  129. 127.
    J. C. Giddings, S. R. Fisher, and M. N. Myers, Am. Lab., Vol. 10 (1978), p. 15.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • M. L. Lee
    • 1
  • K. D. Bartle
    • 2
  1. 1.Brigham Young UniversityProvoUSA
  2. 2.University of LeedsLeedsUK

Personalised recommendations