Modeling Soot Emissions in Combustion Systems

  • R. Farmer
  • R. Edelman
  • E. Wong

Abstract

A comprehensive model for the characterization of the combustion kinetics of hydrocarbon fuels is described. The model framework is based upon the quasi-global concept and extensions appropriate for fuel rich oxidation. Soot formation and consumption processes are considered as an integral part of the model, and pyrolysis, partial oxidation, NOx formation and detailed reaction steps for the path to completion of reaction are included. The model is being developed for wide ranges of application where both conventional and synfuels are of interest. Examples are given for toluene combustion and favorable comparisons between predicted and measured soot emissions demonstrate the utility of the model in dealing with the complexities of fuel-rich combustion.

Keywords

Equivalence Ratio Fuel Oxidation Soot Particle Combustion System Soot Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gg. Wagner, “Seventeenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh (1979), pp. 3–19.Google Scholar
  2. 2.
    I. Glassman, Phenomenological Models of Soot Processes in Combustion Systems. AFOSR Technical Report to be released (1979).Google Scholar
  3. 3.
    P. A. Tesner, Translation from “Fizika Goreniya i Vzryva, ” Vol. 15 (1979), pp. 3–14.Google Scholar
  4. 4.
    D. E. Jensen, Proc. Roy. Soc. London, A-388 (1974), pp. 375–396.Google Scholar
  5. 5.
    P. A. Tesner and V.G. Knorre, Translation from “Fizika Goreniya Vzryra,” Vol. 6 (1970), pp. 386–390.Google Scholar
  6. 6.
    P.A. Tesner, T. D. Snegiriova, and V. G. Knorre, Combust. and Flame, Vol. 17 (1971), pp. 253–260.CrossRefGoogle Scholar
  7. 7.
    P. A. Tesner, E. I. Tsygnakova, L. P. Guilazetdinov, V. P. Zuyev, and G. V. Loshakova, Combust. and Flame, Vol. 17 (1971), pp. 279–285.CrossRefGoogle Scholar
  8. 8.
    G. Prado, and J. B. Howard, “Evaporation-Combustion of Fuels,” ed. J. T. Zung, American Chemical Society (1978), pp. 153–166.CrossRefGoogle Scholar
  9. 9.
    J.Lahayeand G.Prado, “Chemistry and Physics ofCarbon,”Vol.14, eds. P.L.Walker, Jr., and P. A. Thrower, Marcel Decker, Inc., NY (1978), pp. 167–294.Google Scholar
  10. 10.
    H. Jinno, S. Fukutani, and A. Takaya, “Sixteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1976), pp. 709–718.Google Scholar
  11. 11.
    J. Genovese, R. B. Edelman, and O. F. Fortune, AIAA Journal, Vol. 8 (1971), pp. 352357.Google Scholar
  12. 12.
    K. S. Narasimhan and P. J. Foster, “Tenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1965), pp. 253–257.Google Scholar
  13. 13.
    B. F. Magnussen and B. H. Hjertager, “Sixteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1976), pp. 719–729.Google Scholar
  14. 14.
    I. M. Khan and G. Greeves, “Heat Transfer in Flames,” eds N. H. Afgan and J. M. Beer, Halsted Press, NY(1974), pp. 389–404.Google Scholar
  15. 15.
    R. B. Edelman, A. Turan, P. T. Harsha, E. Wong, and W. S. Blazowski, Combustor Modelling, AGARD-CP-275, (1979), pp. 13–1 to 13–14.Google Scholar
  16. 16.
    K. B. Lee, M. W. Thring, and J. M. Beer, Combust. and Flame, Vol. 6 (1962), pp. 137145.Google Scholar
  17. 17.
    J. Nagle, and R. F. Strickland-Constable, “Proc. Fifth Carbon Conf.”, Vol. 1 (1962), pp 154–164.Google Scholar
  18. 18.
    R. B. Edelman and O. F. Fortune, AIAA Paper No. 69–86, (1969).Google Scholar
  19. 19.
    R. B. Edelman and P. T. Harsha, Progress in Energy and Combustion Science, Vol. 4 (1978), pp. 1–62.CrossRefGoogle Scholar
  20. 20.
    R. Roberts, L. D. Aceto, R. Kollrack, D.P. Teixeira and J. M. Bonnell, AIAA Journal, Vol. 10 (1972), pp. 820–826.CrossRefGoogle Scholar
  21. 21.
    R. B. Edelman, O. Fortune, and G. Weilerstein, “Emissions from Continuous Combustion Systems,” eds. W. Cornelius and W. G. Agnew, Plenum Press, New York, (1972), pp. 55–90.CrossRefGoogle Scholar
  22. 22.
    W. S. Blazowski, R. B. Edelman and E. Wong, Fundamental Effects in Continuous Combustion Systems, Summary Technical Progress Report for Period August 15, 1978 —January 31, 1980, DOE Contract DE-ACO3–77-ET-11313.Google Scholar
  23. 23.
    T. S. Wang, R. A. Matula and R. C. Farmer, “Eighteenth Symposium (International) on Combustion,” The Combustion Institute, Pittsburgh, to be published.Google Scholar
  24. 24.
    A. G. McLain, C. J. Jachimon’ski, and C. H. Wilson, NASA Technical Paper 1472 (1979).Google Scholar
  25. 25.
    L. A. Ruth and R. M. Kox’alik, Fundamental Characterization of Alternate Fuel Effects in Continuous Combustion Systems, Technical Status Report for Period May 1, 1980 — May 31, 1980, DOE Contract AC22–77-ET-11313.Google Scholar
  26. 26.
    R. B. Edelman, R. J. Gelinas, C. W. Wilson, E. Y. Wong, Study of Net Soot Formation in Hydrocarbon Reforming for Hydrogen Fuel Cells, Quarterly Report for Period January, 1980 — March, 1980, DOE Contract DE-AC21–79 MC 12735.Google Scholar
  27. 27.
    D. J. Hautman, F. L. Dryer, K. P. Schug, and I. Glassman, A Multiple-Step Overall Kinetic Mechanism for the Oxidation of Hydrocarbons, submitted for publication (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • R. Farmer
    • 1
  • R. Edelman
    • 1
  • E. Wong
    • 1
  1. 1.Science Applications, Inc.Canoga ParkUSA

Personalised recommendations