Abstract

All of the major skeletal minerals (calcite, magnesian calcite, aragonite, apatite and opal) and most of the major kinds of skeletal materials (fibrous apatite, spherulitic aragonite, nacre, crossed-lamellar aragonite, foliated calcite, echinoderm stereom etc.) appeared abruptly in many different kinds of organisms at the beginning of the Phanerozoic (570 million years to Recent). Almost all of the clades known to form mineral skeletons originated in the Cambrian Period of earth history (570–505 million years ago) and hardly any kinds of marine organisms developed new types of mineral skeletons after that time. Recent work on the earliest skeletal fossils provides little support for the view that phosphatic skeletons were more common than carbonate skeletons when hard parts first developed.

Keywords

Lower Cambrian Scleractinian Coral Skeletal Material Rugose Coral Magnesian Calcite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALLISON, C.W., 1981. Siliceous microfossils from the Lower Cambrian of northwest Canada: possible source for biogenic chert. Science, 211, 53–55.PubMedCrossRefGoogle Scholar
  2. BENGTSON, S., 1968. The problematic genus Mobergella from the Lower Cambrian of the Baltic area. Lethaia, 1, 325–351.CrossRefGoogle Scholar
  3. BENGTSON, S., 1970. The Lower Cambrian fossil Tommotia. Lethaia, 3, 363–392.CrossRefGoogle Scholar
  4. BENGTSON, S., 1977. Early Cambrian button-shaped phosphatic microfossils from the Siberian Platform. Palaeontology, 20, 751–762.Google Scholar
  5. BENGTSON, S., 1981. Atractosella, a Silurian alcyonarian octocoral. Journal of Paleontology, 55, 281–294.Google Scholar
  6. BENGTSON, S., 1983. The early history of the Conodonta. Fossils and Strata, 15, 5–19.Google Scholar
  7. BENGTSON, S., 1985. Taxonomy of disarticulated fossils. Journal of Paleontology, 59, 1350–1358.Google Scholar
  8. BENGTSON, S. & CONWAY MORRIS, S., 1984. A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia, 17, 307–329.CrossRefGoogle Scholar
  9. BERG-MADSEN, V., 1986. Middle Cambrian cystoid (sensu lato) stem columnals from Bornholm, Denmark. Lethaia, 19, 67–80.CrossRefGoogle Scholar
  10. BLACK, M., 1972. Crystal development is Discoasteraceae and Braarudosphaeraceae (planktonic algae). Palaeontology, 15, 476–489.Google Scholar
  11. BLAKE, D.F., PEACOR, D.R. & ALLARD, L.F., 1984. Ultrastructural and microanalytical results from echinoderm calcite: implications for biomineralization and diagenesis of skeletal material. Micron and Microscopica Acta, 15, 85–90.CrossRefGoogle Scholar
  12. BRIGGS, D.E.G., 1983. Affinities and early evolution of the Crustacea: the evidence of Cambrian fossils. In Crustacean Phylogeny (ed. F.R. Schram), pp. 1–22. Rotterdam: A.A. Balkema.Google Scholar
  13. BROWN, W.H., FYFE, W.S. & TURNER, F.J., 1962. Aragonite in California glaucophane schists and the kinetics of the aragonite-calcite transformation. Journal of Petrology, 3, 566–582.CrossRefGoogle Scholar
  14. BRYAN, W.B. & HILL, D., 1941. Spherulitic crystallization as a mechanism of skeletal growth in hexacorals Proceedings of the Royal Society of Queensland, 52, 78–91.Google Scholar
  15. COOK, P.J. & SHERGOLD, J.S., 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature, 308, 231–236.CrossRefGoogle Scholar
  16. COTTRELL, A.H. & KELLY, A., 1966. The design of strong materials. Endeavour, 94, 27–32.CrossRefGoogle Scholar
  17. CLARK, G.R., 1976. Shell growth in the marine environment: approaches to the problem of marginal calcification. American Zoologist, 16, 617–626.Google Scholar
  18. CRENSHAW, M.A., 1972. The inorganic composition of molluscan extrapallial fluid. Biol. Bull., Mar. Biol. Lab., Woods Hole, Massachusetts, 143:506–512.CrossRefGoogle Scholar
  19. CURREY, J.D., 1980. Mechanical properties of the mollusc shell. In The Mechanical Properties of Biological Materials (eds. J.F.V. Vincent & J.D. Currey), pp. 75–97. Cambridge: Cambridge University Press.Google Scholar
  20. DACULSI, G., MENANTEAU, J., KEREBEL, L.M. & MITRE, D., 1984. Length and shape of enamel crystals. Calcified Tissue International, 36, 550–555.PubMedCrossRefGoogle Scholar
  21. DAVIES, T.T., CRENSHAW, M.A., & HEATFIELD, B.M. The effect of temperature on the chemistry and structure of echinoid spine regeneration. Journal of Paleontology, 46:874–883.Google Scholar
  22. DONNAY, G. & PAWSON, D.L., 1969. X-ray diffraction studies of echinoderm plates. Science, 166, 1147–1150.PubMedCrossRefGoogle Scholar
  23. DURHAM, J.W., 1978. The probable metazoan biota of the Precambrian as indicated by the subsequent record. Annual Review of Earth and Planetary Sciences, 6, 21–42.CrossRefGoogle Scholar
  24. FOLK, R.L., 1978. The natural history of crystalline calcium carbonate: effect of magnesium content and salinity. Journal of Sedimentary Petrology, 44, 40–53.Google Scholar
  25. GIVEN, RK. & WILKINSON, B.H.,1984. Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. J. Sed. Petrol., 55:109–119.Google Scholar
  26. GLAESSNER, M.F., 1984. The Dawn of Animal Life. 244 pp. Cambridge: Cambridge University Press.Google Scholar
  27. GLIMCHER, MJ., 1984. Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philosophical Transactions of the Royal Society of London, B304, 479–508.CrossRefGoogle Scholar
  28. GORDON, J.E., 1964. Whiskers. Endeavour, 23, 8–12.Google Scholar
  29. GORYANSKIY, V. YU & POPOV, L.E., 1985. Morfologiya, sistematicheskoe polozhenie i proiskhozhdenie bezzamkovykh braxipod s karbonatoy rakovinoy. Paleontologicheskiy Zhurnal, 3,3–15.Google Scholar
  30. GOULD, SJ., 1977. Ever Since Darwin. Reflections in Natural History. New York: Norton.Google Scholar
  31. GRISTINA, A.G., OGA, M., WEBB, L.X. & HOBGOOD, C.D., 1985. Adherent bacterial colonization in the pathogenesis of osteomylitis. Science, 228, 990–993.PubMedCrossRefGoogle Scholar
  32. INOUE, S., OKAZAKI, K., 1977. Biocrystals. Scientific American, 2364, 82–92.Google Scholar
  33. JAMES, N.P. & KLAPPA, C.F., 1983. Petrogenesis of Early Cambrian reef limestones, Labrador, Canada. Journal of Sedimentary Petrology, 53, 1051–1096.Google Scholar
  34. JELL, J S, 1974. The microstructure of some scleractinian corals. Proceedings of the Second International Coral Reef Symposium, vol. 2. Brisbane: Great Barrier Reef Committee.Google Scholar
  35. JELL, P.A., 1979. Plumlites and the machaeridian problem. Alcheringa, 3, 253–259.Google Scholar
  36. JONES, PJ. & MCKENZIE, KG., 1980. Queensland Middle Cambrian Bradoriida (Crustacea): new taxa, palaeobiogeography and biological affinities. Alcheringa, 4, 203–225.CrossRefGoogle Scholar
  37. JONES, W.C., 1955. Crystalline properties of spicules of Leucosolenia complicata. Quarterly Journal of Microscopical Science, 96, 129–149.Google Scholar
  38. KENNEDY, W.J. & HALL, A., 1967. The influence of organic matter on the preservations of aragonite in fossils. Proceedings of the Geological Society of London, 1643, 253–255.Google Scholar
  39. LANDING, E., NOWLAN, G.S. & FLETCHER, T.P., 1980. A microfauna associated with Early Cambrian trilobites of the Callavia Zone, northern Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Science, 17, 400–418.CrossRefGoogle Scholar
  40. LEHNINGER, A.L., 1983. Principles of Biochemistry. Worth Publishers, New York: 1011 pp. LOWENSTAM, H.A., 1981. Minerals formed by organisms. Science, 211, 1126–1131.Google Scholar
  41. LOWENSTAM, H.A. & MARGULIS, L., 1980. Evolutionary prerequisites for early Phanerozoic calcareous skeletons. BioSystems, 12, 27–41.PubMedCrossRefGoogle Scholar
  42. LUSTMANN, J., LEWIN-EPSI’EIN, J. & SHEYER, A., 1976. Scanning electron microscopy of dental calculus. Calcified Tissue Research, 21, 47–55.CrossRefGoogle Scholar
  43. LUTZ, R.A. & RHOADS, D.C., 1977. Anaerobiosis and a theory of growth line formation. Science, 198:1222–1227.PubMedCrossRefGoogle Scholar
  44. MACCLINTOCK, C., 1967. Shell structure of patelloid and bellerophontid gastropods (Mollusca). Peabody Museum of Natural History, Yale University, Bulletin, 22, 1–140.Google Scholar
  45. MACKAY, A.L., 1985. Periodic minimal surfaces. Nature, 314, 604–606.CrossRefGoogle Scholar
  46. MACKENZIE, F., BISCHOFF, W.D., BISHOP, F.C., LOIJENS, M., SCHOONMAKER, J., & WOLLAST, R., 1983. Magnesian calcites: low temperature occurrence, solubility and solid-solution behavior. In Reviews in Mineralogy, vol. 2 (ed. RJ. Reeder), Min. Soc. Amer.:97–144.Google Scholar
  47. MARSH, M.E. AND SASS, RL., 1980. Aragonite twinning in the molluscan bivalve hinge ligament. Science, 208, 1262–1263.PubMedCrossRefGoogle Scholar
  48. MÜLLER, KJ., 1979. Phosphatocopine ostracodes with preserved appendages from the Upper Cambrian of Sweden. Lethaia, 12, 1–27.CrossRefGoogle Scholar
  49. MÜLLER, KJ., 1982. Weichteile von Fossilien aus dem Erdaltertum Die Naturwissenschaften, 69, 245–249.Google Scholar
  50. NICOL, D., 1966. Cope’s rule and Precambrian and Cambrian invertebrates. Journal of Paleontology, 40, 1397–1399.Google Scholar
  51. O’BRIEN, G.W., HARRIS, J.R, MILNES, A.R. & VEEH, H.H., 1981. Bacterial origin of east Australian continental margin phosphorites. Nature, 294, 442–444.CrossRefGoogle Scholar
  52. OKADA, M., 1943. Studies on the periodic pattern of hard tissues in animal body. Shanghai Evening Post, Medical Ed. September, 1943:26–31.Google Scholar
  53. OKAZAKI, K. & INOUE, S., 1976. Crystal property of the larval sea urchin spicule. Development, Growth and Differentiation, 18, 413–434.CrossRefGoogle Scholar
  54. OLIVER, W.A., 1980. The relationship of the scleractinian corals to the rugose corals. Paleobiology, 6, 146–160.Google Scholar
  55. OLIVER, WA., 1984. Conchopeltis: its affinities and significance. Palaeontographica Americana.,54, 95–104.Google Scholar
  56. ONEILL, P.L., 1981. Polycrystalline echinoderm calcite and its fracture mechanics. Science, 213, 646–648.Google Scholar
  57. PACKARD, MJ., HIRSCH, K.F. & IVERSON, J.B., 1984. Structure of shells from eggs of kinosternid turtles. Journal of Morphology, 181, 9–20.CrossRefGoogle Scholar
  58. POULICEK, M., JASPAR-VERSALI, M.F. & GOFFINET, G., 1981. Etude expérimentale de la dégradation des coquilles de mollusques au niveau des sédiments marins, Bulletin de la Société Royale des Sciences de Liége, 50, 1112, 513–518.Google Scholar
  59. PRÉVÔT, L. & LUCAS, J., 1985. Microstructure of apatite-replacing carbonate in synthesized and natural samples. Journal of Sedimentary Petrology, 56, 153–159.CrossRefGoogle Scholar
  60. RAUP, D.M., 1959. Crystallography of echinoid calcite. Journal of Geology, 67, 661–674.CrossRefGoogle Scholar
  61. RAUP, D.M., 1966. Geometric analysis of shell coiling; general problems. Journal of Paleontology, 40, 1178–1190.Google Scholar
  62. RAUP, D.M., 1968. Theoretical morphology of echinoid growth. Paleontological Society Memoir, 2, 50–63.Google Scholar
  63. RAYMENT, I., BAKER, T.S., CASPAR, D.L.D. & MURAKAMI, W.T., 1982. Polyoma virus caspid structure at 223 A resolution. Nature, 295, 110–115.PubMedCrossRefGoogle Scholar
  64. REEDER, R.I., 1983. Carbonates: mineralogy and chemistry. Reviews in Mineralogy, 11, 1–394.Google Scholar
  65. REIF, W. & ROBINSON, JA, 1976. On functional morphology of the skeleton in lychnisc sponges (Porifera, Hexactinellida). Paläontologische Zeitschrift. 50, 57–69.Google Scholar
  66. REPETSKI, J.E., 1981. An Ordovician occurrence of Utahphospha MÜller & Miller. Journal of Paleontology, 55, 395–400.Google Scholar
  67. RHOADS, D.C. & MORSE, J.W., 1971. Evolutionary and ecologic significance of oxygen dificient marine basins. Lethaia, 4, 413–428.CrossRefGoogle Scholar
  68. RHODES, F.T.H. & BLOXAM, T.W., 1971. Phosphatic organisms in the Paleozoic and their evolutionary significance. Proceedings of the North American Paleontological Convention, Part K, 1485–1513.Google Scholar
  69. RIDING, R., 1977. Calcified Plectonema (blue-green algai), a Recent example of Girvanella from Aldabra atoll. Palaeontology. 20, 33–46.Google Scholar
  70. ROSENBERG, G.D., 1980. An ontogenetic approach to the environmental significance of bivalve shell chemistry. In Skeletal Growth of Aquatic Organisms (ed. D.C. Rhoads & RA. Lutz), Plenum, New York: 133–168.Google Scholar
  71. ROSENBERG, G.D., ASHTON, M., HEWITT, R., & SIMMONS, DJ., 1980. Application of normalized power spectra to the analysis of chemical and structural growth patterns. In Skeletal Growth of Aquatic Organisms (ed. D.C. Rhoads & R.A. Lutz), Plenum, New York: 675–686.Google Scholar
  72. ROSENBERG, G.D. & SIMMONS, D.J., 1980. Rhythmic dentinogenesis in the rabbit incisor. circadian, ultradian and infradian periods. Calc. Tiss. Intern., 32:29–44.Google Scholar
  73. ROWELL, AJ., 1982. The monophyletic origin of the Brachiopoda. Lethaia, 15, 299–307.CrossRefGoogle Scholar
  74. RUNNEGAR, B., 1982. The Cambrian explosion: animals or fossils? Journal of the Geological Society of Australia, 29, 395–411.CrossRefGoogle Scholar
  75. RUNNEGAR, B., 1984. Crystallography of the foliated calcite shell layers of bivalve molluscs. Alcheringa, 8, 273–290CrossRefGoogle Scholar
  76. RUNNEGAR, B., 1985a. Shell microstructures of Cambrian molluscs replicated by phosphate. Alcheringa, 9, 245–257.CrossRefGoogle Scholar
  77. RUNNEGAR, B., 1985b. Early Cambrian endolithic algae. Alcheringa, 9, 179–182.CrossRefGoogle Scholar
  78. RUNNEGAR, B., 1986. Molecular palaeontology. Palaeontology 29, 1–24.Google Scholar
  79. RUNNEGAR, B., in prep. Crystallography and biomineralization of the dodecahedral coccosphere of Braarudosphaera bigelowi (Gran and Braarud).Google Scholar
  80. RUNNEGAR, B. & BENTLEY, C., 1983. Anatomy, ecology and affinities of the Australian Early Cambrian bivalve Pojetaia runnegari Jell. Journal of Paleontology, 57, 73–92Google Scholar
  81. SANDBERG, PA., 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305, 19–22.CrossRefGoogle Scholar
  82. SANDERS, J.V., 1964. Colours of precious opal. Nature, 204, 1151–1153.CrossRefGoogle Scholar
  83. SASS, D.B. & MONROE, E.A., 1%7. Shell-growth in Recent terebratuloid Brachiopoda. Palaeontology, 10, 298–306.Google Scholar
  84. SCHOEN, A.H., 1970. Infinite periodic minimal surfaces without self-intersections. NASA Technical Note, D-5541, 1–92.Google Scholar
  85. SEILACHER, A., 1979. Constructional morphology of sand dollars. Paleobiology, 5,191–221.Google Scholar
  86. SEPKOSKI, JJ., 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology, 4, 223–251.Google Scholar
  87. SIMPSON, T.L. & Volcani, B.E. (eds.), 1981. Silicon and Siliceous Structures in Biological Systems. New York: Springer-Verlag.Google Scholar
  88. SMITH, A.B., 1980. Stereom microstructure of the echinoid test. Papers in Palaeontology, 25, 1–81.Google Scholar
  89. STANLEY, S.M., 1976. Fossil data and the Precambrian-Cambrian evolutionary transition. American Journal of Science, 276, 56–76.CrossRefGoogle Scholar
  90. TAYLOR, J.D., 1973. The structural evolution of the bivalve shell. Palaeontology, 15, 73–87.Google Scholar
  91. TOWE, KM., 1967. Echinoderm calcite: single crystal or polycrystalline aggregate? Science, 157, 1048–1050.PubMedCrossRefGoogle Scholar
  92. TOWE, KM., 1970. Oxygen-collagen priority and the early metazoan fossil record. Proceedings of the National Academy of Science, United States of America, 65, 781–788.CrossRefGoogle Scholar
  93. TOWE, KM., BERTHOLD, W. & APPLEMAN, D.E., 1977. The crystallography of Patellina corrugate Williamson: a-axis preferred orientation. Journal of Foraminiferal Research, 7, 58–61.CrossRefGoogle Scholar
  94. TOWE, KM. & THOMPSON, G.R, 1972. The structure of some bivalve shell carbonates prepared by ion-beam thinning. Calcified Tissue Research, 10, 38–48.PubMedCrossRefGoogle Scholar
  95. WARD, P., CARLSON, B., WEEKLY, M. & BRUMBAUGH, B., 1984. Remote telemetry of daily vertical and horizontal movement of Nautilus in Palau. Nature, 309, 248–250.CrossRefGoogle Scholar
  96. WARD, P.D. & CHAMBERLAIN, J., 1983. Radiographic observation of chamber formation in Nautilus pompilius. Nature, 304, 57–59.CrossRefGoogle Scholar
  97. WADA, K, 1972. Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs. Biomineralization, 6, 141–159.Google Scholar
  98. WEINER, S. & TRAUB, W., 1980. X-ray diffraction study of the insoluble organic matrix of mollusk shells. Federation of European Biochemical Societies Letters, 111, 311–316.CrossRefGoogle Scholar
  99. WEINER, S. & TRAUB, W., 1984. Macromolecules in mollusc shells and their functions in biomineralization. Philosophical Transactions of the Royal Society of London, B304, 425–434.CrossRefGoogle Scholar
  100. WHITE, RD., 1986. Cambrian Radiolaria from Utah. Journal of Paleontology, 60, 778–779.Google Scholar
  101. WILBUR, KM. & BERNHARDT, A.M., 1984. Effects of amino acids, magnesium, and molluscan extrapallial fluid on crystallization of calcium carbonate: in vitro experiments. Biol. Bull., Mar. Biol. Lab., Woods Hole, Massachusetts, 166:251–259.CrossRefGoogle Scholar
  102. WILBUR, KM. & SALEUDDIN, A.S., 1983. Shell formation. In The Mollusca, vol. 4 (ed. A.S.M. Saleuddin & KM. Wilbur), Academic Press, New York: 235–287.Google Scholar
  103. WILKES, DA. & CRENSHAW, MA., 1979. Formation of a dissolution layer in molluscan shells. Scan. Elec. Micros., 2:469–474.Google Scholar
  104. WILKINSON, B.H., 1979. Biomineralization, paleoceanography and the evolution of calcareous marine organisms. Geology, 7, 524–527.CrossRefGoogle Scholar
  105. WILLIAMS, A.,1968. Shell structure of the billingsellacean brachiopods. Palaeontology, 11, 486–490.Google Scholar
  106. WRAY, J.L. & DANIELS, F., 1957. Precipitation of calcite and aragonite. Journal of the American Chemical Society, 79, 2031–2034.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Bruce Runnegar
    • 1
  1. 1.Department of Geology and GeophysicsUniversity of New EnglandArmidaleAustralia

Personalised recommendations