Silica Precipitation Induced by the Anaerobic Sulfate Reducing Bacterium Desulfovibrio Desulfuricans: Effects Upon Cell Morphology and Implications for Preservation

  • Stuart J. Birnbaum
  • John W. Wireman
  • Robert Borowski

Abstract

Growth experiments utilizing the sulfate reducing bacterium, Desulfovibrio desulfuricans, suggest a microbial influence in. Experiments conducted with 400 ppm silica produced a dense precipitate of silica within 72 hours in which cells were entombed and caught in cellular division. Experiments conducted in the absence of cells required one month or longer for a loose flocculant of silica to develop; in some samples a precipitate did not form over a 3 month duration. The silicification phenomenon greatly altered the morphology of the bacteria causing deformation of rod-shaped vibrios into partially collapsed cocci and intermediate morphological varieties. This alteration was probably caused by osmotic shock influenced by crystallite accumulation at the cell wall and concomitant retardation of solute transport during silica polymerization. It is suggested that these experiments more closely reproduce natural conditions of silicification of microorganisms than have previous studies and that the morphological change may have implications for interpreting the Precambrian microbial fossil record.

Keywords

Amorphous Silica Silica Precipitation Desulfovibrio Desulfuricans Precambrian Research Scanning Electron Photomicrograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AWRAMIK, S.M., 1984. Ancient stromatolites and microbial mats. In Cohen, Y., Castenhoiz, RW., Halvorson, H.D., (Ed.), Microbial Mats: Stromatolites. Alan R. Liss, Inc., New York. pp. 1–22.Google Scholar
  2. BARGHOORN, E.S. SCHOPF, J.W., 1965. Microorganisms from the Late Precambrian of Central Australia. Science, 150: 337–339.Google Scholar
  3. BARGHOORN, E.S. TYLER, S.A., 1965. Microorganisms from the Gunflint Chert. Science, 147: 563–577.Google Scholar
  4. BIRNBAUM, Si., 1984. Silica in sedimentary sulfide deposits: a microbial origin. Geological Association Canada Program with Abstracts, 9: 47.Google Scholar
  5. BIRNBAUM, S.J. WIREMAN, J.W., 1984. Bacterial sulfate reduction and pH: implications for early diagenesis. Chemical Geology, 43: 143–149.Google Scholar
  6. BIRNBAUM, S.J. WIREMAN, J.W., (1985). Sulfate reducing bacteria and silica solubility: a possible mechanism for evaporite diagenesis and silica precipitation in banded iron formations. Canadian Journal Earth Sciences, 22: 1904–1909.Google Scholar
  7. CLOUD, P., 1965. Significance of the Gunflint ( Precambrian) microflora. Science, 148: 27–45.Google Scholar
  8. CLOUD, P. MORRISON, K., 1980. New microbial fossils from 2 Gyr old rocks in northern Michigan. Geomicrobiology Journal, 2: 161–178.Google Scholar
  9. DUNLOP, J.S.R, MUIR, MD., MILNE, V.A. GROVES, D.I., 1978. A new microfossil assemblage from the Archean of Western Australia. Nature, 274: 676–678.Google Scholar
  10. FERRIS, F.G., BEVERIDGE, T.J. FYFE, W.S., 1986. Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature, 320: 609–611.Google Scholar
  11. FRANCIS, S., MARGULIS, L. BARGHOORN, E.S., 1978a. On the experimental silicification of microorganisms II. On the time of appearance of eukaryotic organisms in the fossil record. Precambrian Research, 6: 65–100.Google Scholar
  12. FRANCIS, S., BARGHOORN, E.S. MARGULIS, L., 1978b. On the experimental silicification of microorganisms III. Implications of the preservation of the green prokaryotic alga Prochloron and other coccoids for interpretation of the microbial fossil record. Precambrian Research, 7: 377–383.Google Scholar
  13. GUENTZEL, M.N., GUERRERO, D. DESHAMBO, R., 1983. Nature of interaction of different wild type Vibrio cholerae with intestinal mucosa. Scanning Electron Microscopy: 263–270.Google Scholar
  14. HOFMANN, H.J., 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics. Journal Paleontology, 50: 1040–1073.Google Scholar
  15. KNOLL, A.H., 1984. Microbiotas of the Late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal Paleontology, 58: 131–162.Google Scholar
  16. LEO, R.F., BARGIOORN, E.S., 1976. Silicification of wood. Botanical Museum Leaflets, Harvard University, 25: 1–45.Google Scholar
  17. LOWE, D.R., 1980. Stromatolites 3400-Myr old from the Archean of Western Australia. Nature, 284: 44 1443.Google Scholar
  18. LOWE, D.R., 1983. Restricted shallow-water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Research, 19: 239–283.Google Scholar
  19. MUIR, M.D. GRANT, P.R., 1976. Micropaleontological evidence from the Onverwacht Group, South Africa. In Windley, B.F. (editor), The Early History of the Earth. John Wiley and Sons, London, pp. 595–604.Google Scholar
  20. NYBERG, A.V. SCHOPF, J.W., 1984. Microfossils in stromatolitic cherts from the Upper Proterozoic Min’yar Formation, southern Ural Mountains, USSR. Journal Paleontology, 58: 738–772.Google Scholar
  21. OEHLER, D.Z., 1976. Transmission electron microscopy of organic microfossils from the Late Precambrian Bitter Springs Formation of Australia: Techniques and survey of preserved ultrastructure. Journal Paleontology, 50: 90–106.Google Scholar
  22. OEHLER, J.H., 1976a. Experimental studies in Precambrian paleontology: Structural chemical changes in blue-green algae during simulated fossilization in synthetic chert. Geological Society America Bulletin, 87: 117–129.Google Scholar
  23. OEHLER, J.H., 1976b. Hydrothermal crystallization of silica gel. Geological Society America Bulletin, 87: 1143–1152.CrossRefGoogle Scholar
  24. OEHLER, J.H. SCHOPF, J.W., 1971. Artificial microfossils: Experimental studies of permineralization of blue-green algae in silica. Science, 174: 1229–1231.Google Scholar
  25. POSTGATE, J.R., 1979. The Sulphate-Reducing Bacteria. Cambridge University Press, Cambridge. 151 PP.Google Scholar
  26. SCHOPF, J.W., 1968. Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. Journal Paleontology, 42: 651–688.Google Scholar
  27. SCHOPF, J.W. BLACIC, J.M., 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the North-Central Amadeus Basin, Australia. Journal Paleontology, 45: 925–960.Google Scholar
  28. SIEVER, R., SCOTT, R.A., 1963. Organic geochemistry of silica. In Breger, I.A. (editor), Organic Geochemistry. Pergamon Press-MacMillan Company, New York, pp. 579–595.Google Scholar
  29. WALTER, M.R., BUICK, R. DUNLOP, J.S.R., 1980. Stromatolites 3400–3500 m.y. old from the North Pole area, Western Australia. Nature, 284: 443–445.Google Scholar
  30. WALTERS, C.C., MARGULIS, L. BARGHOORN, E.S., 1977. On the experimental silicification of microorganisms I. Microbial growth on organo silicon compounds. Precambrian Research, 5: 241–248.Google Scholar
  31. WARNKE, D.A., BLUNT, D.J. POLLOCK, G.E., 1979. Amino acid stereochemistry in siliceous oozes: indications of bacterial activity. Antarctic Journal of the United States, 14: 134–136.Google Scholar
  32. YUN, Z., 1984. A Gunflint type of microfossil assemblage from early Proterozoic stromatolitic cherts in China. Nature, 309: 547–549.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Stuart J. Birnbaum
    • 1
  • John W. Wireman
    • 2
    • 3
  • Robert Borowski
    • 1
  1. 1.Division of Earth and Physical SciencesThe University of Texas at San AntonioSan AntonioUSA
  2. 2.Biological Research SolutionsDetroitUSA
  3. 3.Department of Biological SciencesWayne State UniversityDetroitUSA

Personalised recommendations