Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals pp 433-441 | Cite as
Systems of Biomineralization in the Fungi
Abstract
Crystals of Ca-oxalate are produced on vegetative or reproductive structures by members of each non-flagellate fungal class — the Ascomycetes, Basidiomycetes, and Zygomycetes. These crystals originate within the hyphal wall, distorting the outer wall layers during subsequent crystal growth. Crystals commonly occur on the vegetative mycelium of leaf and wood-rotting Basidiomycetes, both on field-collected and on cultured material. In culture, crystals are typically produced only on the aerial mycelium, not on the substrate mycelium. This suggests that calcium is translocated from the substrate mycelium via the fungal protoplast to the aerial mycelium, where it is then precipitated with oxalic acid. Mucoralean Zygomycetes also produce mineralized deposits on their aerial sporangia and sporangiophores, again suggesting that calcium is transported from the substrate and immobilized on aerial portions of the fungal thallus. Further, in the zygomycete Gilbertella persicaria, the reduction of calcium levels by Ca-oxalate crystallization coincides with an increased rate of mycelial growth. Thus, relatively high levels of calcium in the media appear to inhibit the growth of Gilbertella persicaria. The precipitation of Ca-oxalate may serve as a way for fungi to regulate or reduce the calcium ion concentration in their microenvironment.
Keywords
Oxalic Acid Calcium Oxalate Aerial Mycelium Aerial Hypha Calcium Oxalate CrystalPreview
Unable to display preview. Download preview PDF.
References
- ARNOTT, H.J., 1982. Three systems of biomineralization in plants with comments on the associated organic matrix. In: Biological Mineralization and Demineralization. ( G. H. Nancollas, ed.). Springer-Verlag, New York., pp. 199–218.CrossRefGoogle Scholar
- ARNOTT, H.J.. 1984. Rodlets associated with the cell wall and crystals of litter fungi. Proc. Elec. Microsc. Soc. Amer., 42: 322–323.Google Scholar
- ARNOTT, H.J., & WEBB, M.A., 1983. The structure and formation of calcium oxalate crystal deposits on the hyphae of a wood rot fungus. SEM, 1983/IV: 1747–1758.Google Scholar
- BLAND, C.E., & CHARLES, T.M., 1972. Fine structure of Pilobolus: surface and wall structure. Mycologia, 64: 774–785.CrossRefGoogle Scholar
- BORCHERT, R, 1985. Functional anatomy of the calcium-excreting system of Gleditsia triacanthos L. Botan. Gazz. (Crawfordsville) 145: 474–482.CrossRefGoogle Scholar
- BULLER, A.H.R. 1934. Researches on Fungi. Vol. VI. Longmans, Green and Company, London., 224 p.Google Scholar
- COKER, W.C., & COUCH, J.N., 1928. The Gasteromycetes of the eastern United States and Canada. Univ. of North Carolina Press, Chapel Hill. 201 p.Google Scholar
- CROMACK, K. JR, SOLLINS, P., TODD, R.L., FOGEL, R., TODD, A.W.. FENDER, W., CROSSLEY, M.E., & CROSSLEY, JR., DA., 1977. The role of oxalic acid and bicarbonate in calcium cycling by fungi and bacteria: some possible implications for soil animals. Ecol. Bull. (Stockholm), 25: 246–252.Google Scholar
- DE BARY, A., 1887. Comparative Morphology and Biology of the Fungi, Mycetozoa, and Bacteria. Clarendon Press, Oxford. 525 p.Google Scholar
- FREY-WYSSLING, A., 1981. Crystallography of the two hydrates of crystalline calcium oxalate in plants. Amer. J. Bot., 68: 130–141.CrossRefGoogle Scholar
- GRAUSTEIN, W.C., CROMACK, K., & SOLLINS,P., 1977. Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science, 198: 1252–1254.PubMedCrossRefGoogle Scholar
- HORNER, H.T., TIFFANY, L.H., & CODY, A.M., 1983. Formation of calcium oxalate crystals associated with apothecia of the discomycete Dasyscypha capitata. Mycologia, 75: 423–435.CrossRefGoogle Scholar
- HORNER, H.T., TIFFANY, L.H., & CODY, A.M., 1985a. Calcium oxalate bipyramidal crystals on the basidiocarps of Geastrum minus (Lycoperdales). Proc. Iowa Acad. Sci., 92 (2): 70–77.Google Scholar
- HORNER, H.T., TIFFANY, L.H., CODY, A.M., & KNAPHUS, G., 1985b. Development of fungal calcium oxalate crystals associated with the basidiocarps of Geastrum minus (Lycoperdales), SEM 1985/11: 789–801.Google Scholar
- JONES, D., MCHARDY, W.J., & WILSON, Mi, 1976. Ultrastructure and chemical composition of spines in Mucorales. Trans. Brit. Mycol. Soc., 66: 153–157.CrossRefGoogle Scholar
- KAZMIERCZAK, J., IFIBKKOT, V., & DEGENS, ET., 1985. Biocalcification through time: environmental challenge and cellular response. Palontologica Zeitung, 59, 15–33.Google Scholar
- LLOYD, C.G., 1907. New notes on the Geasters. Mycol. Notes, 25: 309–317.Google Scholar
- POWELL, M., & ARNOTT, H.J., 1985. Calcium oxalate crystal production in two members of the Mucorales. SEM, 1985/I: 183–189.Google Scholar
- SHIPTON, W.A., & LUNN, J.A., 1980. Sporangiole morphology and species separation in Cunninghamella. Trnas. Brit. Mycol. Soc., 74: 483–491.CrossRefGoogle Scholar
- SIMKISS, K. 1977. Biomineralization and detoxification. Calc. Tiss. Res., 24: 199–200.CrossRefGoogle Scholar
- THOMPSON, W., 1984. Distribution, development and functioning of mycelial cord systems of decomposer basidiomycetes of the deciduous woodland floor. In The Ecology and Physiology of the Fungal Mycelium (D. H. Jenning, A. D. M. Rayner, eds. ) pp. 185–214.Google Scholar
- URBANUS, J.F.L.M., VAN DEN ENDE, H., & KOCH, B., 1978. Calcium oxalate crystals in the wall of Mucor mucedo. Mycologia, 70: 829–842.CrossRefGoogle Scholar
- WHITNEY, K.D., & ARNOTT, H.J., 1986. Morphology and development of calcium oxalate deposits in Gilbertella persicaria (Mucorales). Mycologia, 78: 42–51.CrossRefGoogle Scholar
- WHITNEY, K.D., & ARNOTT, H.J., 1986. Calcium oxalate crystals and basidiocarp dehiscence in Geastrum saccatum (Gasteromycetes). Mycologia, 78: 649–656.CrossRefGoogle Scholar
- WHITNEY, K.D., & ARNOTT, H.J., 1987. Calcium oxalate crystal morphology and development in Agaricus bisporus. Mycologia, 79: 180–187.CrossRefGoogle Scholar
- YOUNG, T.W.K., 1968. Electron microscopic study of the asexual structures in Mucorales. Proc. Linnean Soc. Lond., 179: 1–9.Google Scholar