Function of Molluscan Statocysts

  • Michael L. Wiederhold
  • Christine E. Sheridan
  • Nancy K. R. Smith

Abstract

The gravity sensors of most molluscs are spherical organs called statocysts. The wall of the sphere contains mechanosensory cells whose sensory cilia project into the lumen of the cyst. The lumen is filled with fluid and dense “stones”, the statoconia or statoliths, which sink under the influence of gravity to load and stimulate receptor cells which are at the bottom. The composition of the statoconia is known in only a few species. Data presented here suggest that they are aragonite in Aplysia. The statoconia of Aplysia californica are shown to be calcified about a lamellar arrangement of membranes. Similar lamellar membrane arrangements are seen within the receptor cells, and their possible role in the formation of the statoconia is discussed. Scanning electron micrographs of unfixed statoconia reveal plate-like crystallization on their surface. Elemental analysis shows a relatively high strontium content. This is of interest in light of the recent report (Bidwell et al., 1986) that strontium is required in the culture medium of several laboratory-reared molluscs before statoconia develop.

Keywords

Receptor Cell Scanning Electron Micro Lamellar Body Pedal Ganglion Cyst Lumen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BALLARINO, J., HOWLAND, H.C., SKINNER, H.C.W., BROTHERS, E.B., & BASSETT, W., 1985. Studies of otoconia in the developing chick by polarized light microscopy. Amer. J. Anat., 174: 131–144.PubMedCrossRefGoogle Scholar
  2. BIDWELL, J P, PAIGE, J.A., & KUZIRIAN, A.M., 1986. Effects of strontium on the embryonic development of Aplysia californica. Biol. Bull., 170: 75–90.CrossRefGoogle Scholar
  3. CARLSTROM, D., 1963. A crystallographic study of vertebrate otoliths. Biol. Bull., 125: 441–463.CrossRefGoogle Scholar
  4. COGGESHALL, R.E., 1969. A fine structural analysis of the statocyst in Aplysia californica. J. Morph., 127: 113–132.CrossRefGoogle Scholar
  5. COLMERS, W.F., HIXON, RF., HANLON, RT., FORSYTHE, J.W., ACKERSON, M.V., WIEDERHOLD, M.L., & HULET, W.H., 1984. “Spinner” cephalopods: defects of statocyst suprastructures in an invertebrate analogue of the vestibular apparatus. Cell Tissue Res., 236: 505–515.Google Scholar
  6. CRAGG, S.M., & NOTT, J.A., 1977. The ultrastructure of the statocysts in the pediveliger larvae of Pecten maximus (L.) (Bivalvia). J. Exp. Mar. Biol. Ecol., 27: 23–36.CrossRefGoogle Scholar
  7. CRICK, RE., BURKART, B., CHAMBERLAIN, J.A., & MANN, K.O., 1985. Chemistry of calcified portions of Nautilus pompilius. J. Mar. Biol. Assoc. U.K., 65: 415–420.CrossRefGoogle Scholar
  8. DANES, B.S., & BEARN, A.G., 1972. Oyster ciliary inhibition by cystic fibrosis culture medium. J. Exp. Med., 136: 1313–1317.PubMedCrossRefGoogle Scholar
  9. DILLY, P.N., 1976. The structure of some cephalopod statoliths. Cell Tissue Res., 175: 147–164.PubMedCrossRefGoogle Scholar
  10. ERWAY, L.C., HURLEY, L.S., & FRASER, A.S., 1970. Congenital ataxia and otolith defects due to manganese deficiency in mice. J. Nutrition, 100: 643–654.Google Scholar
  11. GALLAGER, S.M., BIDWELL, J.P., & KUZIRIAN, A.M., 1988. Strontium is required in artificial seawater for embryonic shell formation in two species of bivalve molluscs. In The Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals ( R.E. Crick, ed.). Plenum Publishing Corp., New York.Google Scholar
  12. GALLIN, E.K., & WIEDERHOLD, M.L., 1977. Response of Aplysia statocyst receptor cells to physiologic stimulation. J. Physiol. (London), 266: 123–137.Google Scholar
  13. GEUZE, J.J., 1968. Observations on the function and the structure of the statocysts of Lymnaea stagnalis (L.) Netherlands J. Zool., 18: 155–204.Google Scholar
  14. GROSSMAN, Y., ALKON, D.L., & HELDMAN, E., 1979. A common origin of voltage noise and generator potentials in statocyst hair cells. J. Gen. Physiol., 73: 23–48.PubMedCrossRefGoogle Scholar
  15. JOHNSSON, L.-G., ROUSE, RC., WRIGHT, C.G., HENRY, P.J., & HAWKINS, J.E., 1982. Pathology of neuroepithelial suprastructures of the human inner ear. Amer. J. Otolaryngology, 3: 77–90.CrossRefGoogle Scholar
  16. JOHNSSON, L.-G., WRIGHT, C.G., PRESTON, RE., & HENRY, P.J., 1980. Defects of the otoconial membranes in normal guinea pigs. Acta Otolaryngolica, 89: 93–104.CrossRefGoogle Scholar
  17. KRIEGSTEIN, A.R., 1977a. Stages in the post-hatching development of Aplysia californica. J. Exp. Zool., 199: 275–288.PubMedCrossRefGoogle Scholar
  18. KRIEGSTEIN, A.R., 1977b. Development of the nervous system of Aplysia californica. Proc. Nat. Acad. Sci. (USA), 74: 375–378.CrossRefGoogle Scholar
  19. KUZIRIAN, A.M., ALKON, D.L., & HARRIS, L.G., 1981. An infraciliary network in statocyst hair cells. J. Neurocytology, 10: 497–514.CrossRefGoogle Scholar
  20. LAVERACK, M.S., 1968. On superficial receptors. Sym. Zool. Soc. London, 23: 299–326.Google Scholar
  21. LIM, D.J., & ERWAY, L.C., 1974. Influence of manganese on genetically defective otolith. A behavioral and morphological study. Ann. Otology, Rhinology, and Laryngology, 83: 565–581.Google Scholar
  22. LINDEMANN, C.B., FENTIE, I., & RIKMENSPOEL, R., 1980. A selective effect of Ni+ + on wave initiation in bull sperm flagella. J. Cell Biol., 87: 420–426.PubMedCrossRefGoogle Scholar
  23. LOWENSTAM, H.A., TRAUB, W., & WEINER, S., 1984. Nautilus hard parts. A study of the mineral and organic constituents. Paleobiol. 10: 268–279.Google Scholar
  24. MANN, S., PARKER, S.B., ROSS, M.D., SKARNULIS, A.J., & WILLIAMS, RJ.P., 1983. The ultrastructure of the calcium carbonate balance organs of the inner ear: an ultra-high resolution electron microscopy study. Proc. Roy. Soc. London, Ser. B, 218: 415–424.CrossRefGoogle Scholar
  25. MARMO, F., FRANCO, E., & BALSAMO, G., 1981. Scanning electron microscopic and X-ray diffraction studies of otoconia in the lizard Podarcis s. sicula. Cell Tissue Res., 218: 265–270.PubMedCrossRefGoogle Scholar
  26. MCKEE, A.E., WIEDERHOLD, M.L., 1974. Aplysia statocyst receptor cells: Fine structure. Brain Res., 78: 490–494.Google Scholar
  27. MORTON, B., 1985. Statocyst structure in the Anoznalodesmata (Bivalvia). J. Zool. Soc. London (A), 206: 23–34.CrossRefGoogle Scholar
  28. NICOL, J.A., 1967. The Biology of Marine Animals. London: Isaac Pitman and Sons, pp. 699.Google Scholar
  29. ROSS, M.D., & PEACOR, D.R, 1975. The nature and crystal growth of otoconia in the rat. Ann. Otology, Rhinology and Laryngology, 84: 22–36.Google Scholar
  30. ROSS, M.D., & POTE, K.G., 1984. Some properties of otoconia. Phil. Trans. Roy. Soc. London, Ser. B, 304: 445–452.CrossRefGoogle Scholar
  31. SALAMAT, M.S., ROSS, M.D., & PEACOR, D.R., 1980. Otoconial formation in the fetal rat. Ann. Otology, Rhinology, and Laryngology, 89: 229–238.Google Scholar
  32. STOMMEL, E.W., S1’EPHENS, R.E., & ALKON, D.L., 1980. Motile statocyst cilia transmit rather than directly transduce mechanical stimuli. J. Cell Biol., 87: 652–662.Google Scholar
  33. TSIRULIS, T.P., 1974. The fine structure of the statocyst of the univalve mollusk Clione limacina. J. Evol. Biochem. Physiol., 10: 158–165.Google Scholar
  34. VINNIKOV, YAA., KHARKEEVICH, T.A., ARONOVA, M.Z., TSIRULIS, T.P., LAVORA, YE.A., & NATOCHIN, V.V., 1980. Evolution of the otolith in invertebrates. Z. Obschei Biol., 41: 815–827.Google Scholar
  35. WIEDERHOLD, M.L., 1974.Aplysia statocyst receptor cells: intracellular responses to physiologic stimuli. Brain Res., 81: 310–313.Google Scholar
  36. WIEDERHOLD, M.L., 1976. Mechanosensory transduction in “sensory” and “motile” cilia. Ann. Rev. Biophys. Bioeng., 5: 39–62.CrossRefGoogle Scholar
  37. WIEDERHOLD, M.L., 1977. Rectification in Aplysia statocyst receptor cells. J. Physiol. (London), 266: 139–156.Google Scholar
  38. WIEDERHOLD, M.L., 1978. Membrane voltage noise associated with ciliary beating in the Aplysia statocyst. Brain Res., 156: 369–374.PubMedCrossRefGoogle Scholar
  39. WIEDERHOLD, M.L., SHERIDAN, C.E., & SMITH, N.K.R., 1986. Statoconia formation in molluscan statocysts. Scan. Elec. Micros./1986/II: 781–792.Google Scholar
  40. WILLIAMS, M.C., 1977. Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs. J. Cell Biol., 72: 260–277.PubMedCrossRefGoogle Scholar
  41. WOLFF, H.G., 1973. Multi-directional sensitivity of statocyst receptor cells of the opisthobranch gastropod Aplysia limacina. Mar. Behay. Physiol., 1: 361–373.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Michael L. Wiederhold
    • 1
    • 3
  • Christine E. Sheridan
    • 1
    • 3
  • Nancy K. R. Smith
    • 2
  1. 1.Division of OtorhinolaryngologyThe University of Texas Health Science Center at San AntonioSan AntonioUSA
  2. 2.Department of Cellular and Structural BiologyThe University of Texas Health Science Center at San AntonioSan AntonioUSA
  3. 3.Audie L. Murphy Memorial Veteran’s HospitalSan AntonioUSA

Personalised recommendations