Pulsed Laser Ablation of Soft Tissue

  • Ton G. Van Leeuwen
  • E. Duco Jansen
  • Massoud Motamedi
  • Cornelius Borst
  • A. J. Welch
Part of the Lasers, Photonics, and Electro-Optics book series (LPEO)

Abstract

The motivation for the material presented in this chapter came initially from the development of a new generation of pulsed lasers for laser angioplasty, in which laser light delivered through a fiberoptic is used to ablate intravascular plaque. In the eighties continuous wave (cw) lasers were used for the ablation task in conjunction with a variety of modified fiber tips. More recently there has been a shift from cw to pulsed lasers for laser angioplasty. In general, pulsed laser ablation seems to be a trade off between thermal and mechanical damage to tissue adjacent to the ablation crater. Currently, pulsed lasers are being used for tissue ablation in many medical applications. Two main groups of pulsed lasers are particularly attractive for photo-ablation of tissue. These operate either in the mid-infrared (IR) or the ultraviolet (UV) region of the spectrum. Even though both types of lasers are employed clinically, the mechanisms of ablation are not fully understood.

Keywords

Excimer Laser Bubble Formation Vapor Bubble Pulse Laser Ablation Holmium Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldman L, Wilson R, Hornby P, Meyer R. “Laser radiation of malignancy in man,” Cancer 18: 533–545 (1965).CrossRefGoogle Scholar
  2. 2.
    Montgomery TC, Sharp JB, Bellina JH, Ross LF. “Comparative gross and histologic study of the effects of scalpel, electric knife and carbon dioxide laser on skin and uterine horn incisions in dogs,” Lasers Surg. Med, 3: 9–22 (1983).CrossRefGoogle Scholar
  3. 3.
    Litvack F, Grundfest WS, Adler L, Hickey AE, Segalowitz J, Hestrin LB, Mohr FW, Goldenberg T, Laudenslager JS, Forrester JS. “Percutaneous excimer-laser and excimer-laser-assisted angioplasty of the lower extremities: results of initial clinical trial,” Radiology 172: 331–335 (1989).Google Scholar
  4. 4.
    Grundfest WS, Litvack F, Forrester JS, Goldenberg T, Swan HJ, Morgenstern L, Fishbein M, McDernid IS, Rider DM, Pacala TJ, Laudenslager JB. “Laser ablation of human atherosclerotic plaque without adjacent tissue injury,” J. Am. Coll. Cardiol. 5: 929–933 (1985).CrossRefGoogle Scholar
  5. 5.
    Haase KK, Baumbach A, Wehrmann M, Duda S, Cerullo G, Ruckle B, Steiger E, Karsch KR. “Potential use of holmium lasers for angioplasty: evaluation of a new solid-state laser for ablation of atherosclerotic plaque,” Lasers Surg. Med. 11: 232–237 (1991).CrossRefGoogle Scholar
  6. 6.
    Jansen ED, Le TH, Welch AJ. “Excimer, Ho:YAG and Q-switched Ho:YAG ablation of aorta: a comparison of temperatures and tissue damage in vitro,” Appl. Opt. 32: 526–534 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    Isner JM, Clarke R. (eds.). Cardiovascular Laser Therapy, Raven Press Ltd., New York, 1989.Google Scholar
  8. 8.
    Geschwind HJ, Dubois Rande JL, Murphy-Chutorian D, Tomaru T, Zelinsky R, Loisance D. “Percutaneous coronary angioplasty with mid-infrared laser and a new multifibre catheter,” Lancet 336: 245–246 (1990).CrossRefGoogle Scholar
  9. 9.
    Litvack F, Eigler NL, Margolis JR, Grundfest WS, Rothbaum D, Linnemeier T, Hestrin LB, Tsoi D, Cook SL, Krauthamer D. “Percutaneous excimer laser coronary angioplasty,” Am. J. Cardiol. 66: 1027–1032 (1990).CrossRefGoogle Scholar
  10. 10.
    Karsch KR, Haase KK, Voelker W, Baumbach A, Mauser M, Seipel L. “Percutaneous coronary excimer laser angioplasty in patients with stable and unstable angina pectoris. Acute results and incidence of restenosis during 6-month follow-up,” Circulation 81: 1849–1859 (1990).CrossRefGoogle Scholar
  11. 11.
    Cotliar AM, Schubert HD, Mandel ER, Trokel SL. “Excimer laser radial keratotomy,” Opthalmology 92: 206–208 (1985).Google Scholar
  12. 12.
    Marshall JS, Trokel SL, Rothery S, Schubert HD. “An ultrastructural study of corneal incisions induced by an excimer laser at 193 nm,” Opthalmology 92: 749–758 (1985).Google Scholar
  13. 13.
    Keller U, Hibst R. “Experimental studies of the application of the Er:YAG laser on dental hard substances: II Light microscopic and SEM investigations,” Lasers Surg. Med. 9: 345– 351 (1989).CrossRefGoogle Scholar
  14. 14.
    Hofmann R, Hartung R. “Use of pulsed Nd:YAG laser in the ureter,” Urol. Clin. North Am. 15: 369–375 (1988).Google Scholar
  15. 15.
    Meller M, Black J, Sherk H, Uppal G, Rhodes A. “Wavelength selection in laser arthroscopy,” Lasers Surg. Med. Suppl. 3 (201): 50 (1991).Google Scholar
  16. 16.
    Schlenk F, Profeta G, Nelson JS, Andrews JA. “Laser assisted fixation of ear prosthesis after stapedectomy,” Lasers Surg. Med. 10: 444–447 (1990).CrossRefGoogle Scholar
  17. 17.
    Stein E, Sedlacek T, Fabian RL, Nishioka NS. “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Lasers Surg. Med. 10: 384–388 (1990).CrossRefGoogle Scholar
  18. 18.
    Sanborn TA, Torre SR, Sharma SK, Hershman RA, Cohen M, Sherman W, Ambrose JA. “Percutaneous coronary excimer laser-assisted balloon angioplasty: initial clinical and quantitative angiographic results in 50 patients,” J. Am. Coll. Cardiol. 17: 94–99 (1991).CrossRefGoogle Scholar
  19. 19.
    Feld MS, Kramer JR. “Mutagenicity and the XeCI excimer laser: a relationship of consequence?,” Am. Heart J. 122: 1803–1805 (1991).CrossRefGoogle Scholar
  20. 20.
    Forster W, Emmerich KH, Busse H, Scheid W, Weber J, Traut H. “Induction of chromosome aberrations in human lymphocytes as a model for evaluating the mutagenic effect of excimer laser irradiation in ophthalmology,” Fortschr. Ophthalmol. 88: 377–379 (1991).Google Scholar
  21. 21.
    Forster W, Scheid W, Weber J, Traut H. “A model for testing the mutagenicity of excimer laser radiation in ophthalmology,” Acta Ophthalmol. Copenh. 69: 533–535 (1991).CrossRefGoogle Scholar
  22. 22.
    Frentzen M, Koort HJ, Kramer B. “DNA damage induced by 193-nm radiation in mammalian cells,” Cancer Res. 51: 288–293 (1991).Google Scholar
  23. 23.
    Lubatschowski H, Kermani O, Otten C, Haller A, Schmiedt KC, and Ertmer W. ArF-excimer laser-induced secondary radiation in photoablation of biological tissue, Lasers Surg. Med. 14: 168–177 (1994).CrossRefGoogle Scholar
  24. 24.
    Kadipasaoglu KA, Rastegar S, Sartori M, Watson LE, Clubb FJ, Gonger JL, Hare WD, Edelen B, Moore MS, Frazier OH. “In vitro ablation of human aorta under saline and blood with the holmium:YAG lasers,” Laser Life Sci. 5: 95–112 (1992).Google Scholar
  25. 25.
    LeCarpentier GL, Motamedi M, McMath LP, Rastegar S, Welch AJ. “Continuous wave laser ablation of tissue: analysis of thermal and mechanical events,” IEEE Trans. Biomed. Eng. 40: 188–200 (1993).CrossRefGoogle Scholar
  26. 26.
    Verdaasdonk RM, Borst C, Gemert MJC van. “Explosive onset of continuous wave tissue ablation,” Phys. Med. Biol. 35: 1129–1144 (1990).CrossRefGoogle Scholar
  27. 27.
    LeCarpentier GL, Motamedi M, Welch AJ. “Thermally Induced Changes in Mechanical Properties of Tissue During CW Laser Ablation,” ASME Winter Annual Meeting, HTD-Vol. 189/ BED-Vol. 18: 79–83 (1991).Google Scholar
  28. 28.
    Welch AJ, Motamedi M, Rastegar S, LeCarpentier GL, Jansen D. “Laser thermal ablation,” Photochem. Photobiol. 53: 815–823 (1991).Google Scholar
  29. 29.
    Walsh JT Jr, Flotte TJ, Deutsch TF. “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9: 314–326 (1989).CrossRefGoogle Scholar
  30. 30.
    Nelson JS, Yow L, Liaw LH, Macleay L, Zavar RB, Orenstein A, Wright WH, Andrews JJ, Berns MW. “Ablation of bone and methacrylate by a prototype mid-infrared erbium:YAG laser,” Lasers Surg. Med. 8: 494–500 (1988).CrossRefGoogle Scholar
  31. 31.
    Watanabe S, Flotte TJ, McAuliffe DJ, Jacques SL. “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol. 90: 761–766 (1988).CrossRefGoogle Scholar
  32. 32.
    Jacques SL. “Laser-tissue interactions: photochemical, photothermal and photomechanical,” Surg. Clin. North Am. 72: 531–558 (1992).Google Scholar
  33. 33.
    McKenzie AL. “Physics of thermal processes in laser–tissue interaction,” Phys. Med. Biol. 35: 1175–1209 (1990).CrossRefGoogle Scholar
  34. 34.
    Gemert MJC van, Welch AJ. “Time constants in thermal laser medicine,” Lasers Surg. Med. 9: 405–421 (1989).CrossRefGoogle Scholar
  35. 35.
    Vogel A, Schweiger P, Frieser A, Asiyo MN, Birngruber R. “Intraocular Nd:YAG laser surgery: light-tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26: 2240–2260 (1990).ADSCrossRefGoogle Scholar
  36. 36.
    Yashima Y, McAuliffe DJ, Jacques SL, Flotte TJ. “Laser-induced photoacoustic injury of skin: effect of inertial confinement,” Lasers Surg. Med. 11: 62–68 (1991).CrossRefGoogle Scholar
  37. 37.
    Paltauf G, Reichel E, Schmidt-Kloiber H. “Study of different ablation models by use of highspeed sampling photography,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction III, SPIE, Bellingham, 1646: 343–352 (1992).Google Scholar
  38. 38.
    Eisberg R, Resnick R, “Molecules,” in Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Wiley, New York, 1974, pp. 451–479.Google Scholar
  39. 39.
    Morcos NC, Berns M, Henry WL. “Phycocyanin: laser activation, cytotoxic effects, and uptake in human atherosclerotic plaque,” Lasers Surg. Med. 8: 10–17 (1988).CrossRefGoogle Scholar
  40. 40.
    Ortu P, LaMuraglia GM, Roberts WG, Flotte TJ, Hasan T. “Photodynamic therapy of arteries: a novel approach for treatment of experimental intimal hyperplasia,” Circulation 85: 1189–1196 (1992).CrossRefGoogle Scholar
  41. 41.
    Linsker R, Srinivasan R, Wynne JJ, Alonso DR. “Far-ultraviolet laser ablation of atherosclerotic lesions,” Lasers Surg. Med. 4: 201–206 (1984).CrossRefGoogle Scholar
  42. 42.
    Srinivasan R, Leigh WJ. “Ablative photodecomposition: action of far-ultraviolet (193 nm) laser radiation on poly(ethylene therethalate) films,” J. Am. Chem. Soc. 104: 6784–6785 (1982).CrossRefGoogle Scholar
  43. 43.
    Keyzer M, Richards-Kortum RR, Jacques SL, Feld MS. “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28: 4286–4292 (1989).ADSCrossRefGoogle Scholar
  44. 44.
    Muller G, Dorschel K, Kar H. “Biophysics of the photoablation process,” Lasers Med. Sci. 6: 241–254 (1991).CrossRefGoogle Scholar
  45. 45.
    Cheong WF, Prahl SA, Welch AJ. “A review of the optical properties of biological tissue,” IEEE Trans. Quantum Elecron. 26: 2166–2185 (1990).ADSCrossRefGoogle Scholar
  46. 46.
    Boulnois JL. “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1: 47–66 (1986).CrossRefGoogle Scholar
  47. 47.
    Izatt JA, Albalgli D, Itzkan I, Feld MS. “Pulsed laser ablation of calcified tissue: physical mechanisms and fundamental parameters,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction I, SPIE, Bellingham, 1202: 133–140 (1990).Google Scholar
  48. 48.
    Flotte TJ, Yashima Y, Watanabe S, McAuliffe DJ, Jacques SL. “Morphological studies of laser-induced photoacoustic damage,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction I, SPIE, Bellingham, 1202: 71–77 (1990).Google Scholar
  49. 49.
    Dyer PE, Al-Dhahir RK. “Transient photoacoustic studies of laser tissue ablation,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction I, SPIE, Bellingham, 1202: 46–60 (1990).Google Scholar
  50. 50.
    Dingus RS, Shafer BP. “Laser-induced shock wave effects in materials,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction I, SPIE, Bellingham, 1202: 36–45 (1990).Google Scholar
  51. 51.
    Doukas AG, Birngruber R, Deutsch TF. “Determination of the shock wave pressures generated by laser-induced breakdown in water,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction I, SPIE, Bellingham, 1202: 61–70 (1990).Google Scholar
  52. 52.
    Cross FW, Bowker TJ. “The physical properties of tissue ablation with excimer lasers,” Med. Instrum. 21: 226–230 (1987).Google Scholar
  53. 53.
    CRC Handbook of Chemistry and Physics, Boca Raton, Ann Harbor, Boston, CRC Press, 1991.Google Scholar
  54. 54.
    Oraevsky AA, Jacques SL, Pettit GH, Saidi IS, Tittel FK, Henry PD. “XeCl laser ablation of atherosclerotic aorta: optical properties and energy pathways,” Lasers. Surg. Med. 12: 585–597 (1992).CrossRefGoogle Scholar
  55. 55.
    Gijsbers GHM, Sprangers RLH, Keijzer M, de Bakker JMT, van Leeuwen TG, Verdaasdonk RM, Borst C, Gemert MJC van. “Some laser-tissue interactions in 308 nm excimer laser coronary angioplasty,” J. Interv. Card.3: 231–241 (1990).CrossRefGoogle Scholar
  56. 56.
    Lane RJ, Wynne JJ, Geronemus RG. “Ultraviolet laser ablation of skin: healing studies and a thermal model,” Lasers Surg. Med. 6: 504–513 (1987).CrossRefGoogle Scholar
  57. 57.
    Clarke RH, Isner JM, Donaldson RF, Jones G. “Gas chromatographic-light microscopic correlative analysis of excimer laser photoablation of cardiovascular tissues: evidence for a thermal mechanism,” Circ. Res. 60: 429–437 (1987).CrossRefGoogle Scholar
  58. 58.
    Thomsen SL, Pearce JA, Cheong WF. “Changes in birefringence as markers of thermal damage in tissues,” IEEE Trans. Biomed. Eng. 36: 1174–1179 (1989).CrossRefGoogle Scholar
  59. 59.
    Thomsen S. “Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions,” Photochem. Photobiol. 53: 825–835 (1991).Google Scholar
  60. 60.
    Cleary SF. “Laser pulses and the generation of acoustic transients in biological material,” in Wohlbarst, ML (ed.), Laser Applications in Medicine and Biology, Plenum Press, New York, 3: 175–219 (1977).Google Scholar
  61. 61.
    Dingus RS, Scammon RJ. “Gruneisen-stress-induced ablation of biological tissue,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction II, SPIE, Bellingham, 1427: 45–54 (1991).Google Scholar
  62. 62.
    Carome EF, Clark NA, Moeller CE. “Generation of acoustic signals in liquids by ruby laserinduced thermal stress transients,” Appl. Phys. Lett. 4: 95–97 (1964).ADSCrossRefGoogle Scholar
  63. 63.
    Bushnell JC, McCloskey DJ. “Thermoelastic stress production in solids,” J. Appl. Phys. 39: 5541–5546 (1968).ADSCrossRefGoogle Scholar
  64. 64.
    Neu W, Nyga R, Tischler C, Haase KK, Karsch KR. “Ultrafast imaging of vascular tissue ablation by a XeCl excimer laser,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction II, SPIE, Bellingham, 1425: 37–44 (1991).Google Scholar
  65. 65.
    de la Torre R, Gregory KW. “Cavitation bubbles and acoustic transients may produce dissections during laser angioplasty,” J. Am. Coll. Cardiol. 19: 48A (1992).CrossRefGoogle Scholar
  66. 66.
    Prince MR, LaMuraglia GM, Seidlitz CE, Prahl SA, Athanasoulis CA, Birngruber R. “Ball-tipped fibers for laser angioplasty with the pulsed dye laser,” IEEE J. Quantum Electron. 26: 2297–2304 (1990).ADSCrossRefGoogle Scholar
  67. 67.
    Gijsbers GH, van den Broecke DG, Sprangers RL, and van Gemert MJ. Effect of force on ablation depth for a XeCl excimer laser beam delivered by an optical fiber in contact with arterial tissue under saline, Lasers Surg. Med. 12: 576–584 (1992).CrossRefGoogle Scholar
  68. 68.
    Srinivasan R, Casey KG, Haller JD. “Subnanosecond probing of the ablation of soft plaque from arterial wall by 308 nm laser pulses delivered through a fiber,” IEEE J. Quantum Electron. 26: 2279–2283 (1990).ADSCrossRefGoogle Scholar
  69. 69.
    Leeuwen TG van, Erven L van, Meertens JH, Motamedi M, Post MJ, Borst C. “Origin of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19: 1610–1618 (1992).CrossRefGoogle Scholar
  70. 70.
    Preisack MB, Neu W, Nyga R, Wehrmann M, Haase KK, Karsch KR. “Ultrafast imaging of tissue ablation by a XeCl excimer laser in saline,” Lasers Surg. Med. 12: 520–527 (1992).CrossRefGoogle Scholar
  71. 71.
    Isner JM. “Blood,” in Isner JM, Clarke R (eds.), Cardiovascular Laser Therapy, Raven Press, New York, 1989, pp. 39–62.Google Scholar
  72. 72.
    Leeuwen TG van, Veen MJ van der, Verdaasdonk RM, Borst C. “Non-contact tissue ablation by holmium:YSGG laser pulses in blood,” Lasers Surg. Med. 11: 26–34 (1991).CrossRefGoogle Scholar
  73. 73.
    Loertscher H, Shi WQ, Grundfest WS. “Tissue ablation through water with erbium:YAG lasers,” IEEE Trans. Biomed. Eng. 39: 86–87 (1992).CrossRefGoogle Scholar
  74. 74.
    Walsh JT Jr., Deutsch TF. “Pulsed CO2 laser ablation of tissue: effect of mechanical properties,” IEEE Trans. Biomed. Eng. 36: 1195–1201 (1989).CrossRefGoogle Scholar
  75. 75.
    Lord Rayleigh OM. “On the pressure developed in a liquid during the collapse of a spherical cavity,” Phil. Mag. 34: 94–98 (1917).MATHCrossRefGoogle Scholar
  76. 76.
    Izatt JA, Albagli D, Britton M, Jubas JM, Itzkan I, Feld MS. “Wavelength dependence of pulsed laser ablation of calcified tissue,” Lasers Surg. Med. 11: 238–249 (1991).CrossRefGoogle Scholar
  77. 77.
    Zysset B, Fujimoto JG, Deutsch TF. “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48: 139–147 (1989).ADSCrossRefGoogle Scholar
  78. 78.
    Vogel A, Hentschel W, Holzfuss J, Lauterborn W. “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers,” Ophthalmology 93: 1259–1269 (1986).Google Scholar
  79. 79.
    Bonner RF, Smith PD, Prevosti LG, Bartorelli A, Almagor Y, Leon MB. “Laser sources for angioplasty,” in Abela GS (ed.), Lasers in Cardiovascular Medicine and Surgery: Fundamentals and Techniques, Kluwer Academic Publishers, Boston, Dordrecht, London, (1990), pp. 31–44.CrossRefGoogle Scholar
  80. 80.
    Tomaru T, Geschwind HJ, Boussignac G, Lange F, Tahk SJ. “Comparison of ablation efficacy of excimer, pulsed-dye, and holmium-YAG lasers relevant to shock waves,” Am. Heart J. 123: 886–895 (1992).CrossRefGoogle Scholar
  81. 81.
    Tomaru T, Geschwind HJ, Boussignac G, Lange F, Tahk SJ. “Characteristics of shock waves induced by pulsed lasers and their effects on arterial tissue: comparison of excimer, pulse dye, and holmium YAG lasers,” Am. Heart J. 123: 896–904 (1992).CrossRefGoogle Scholar
  82. 82.
    Ward B, Emmony DC. “Conservation of energy in the oscillations of laser-induced cavitation bubbles,” J. Acoust. Soc. Am. 88: 434–441 (1990).ADSCrossRefGoogle Scholar
  83. 83.
    Vogel A, Busch S, Jungnickel K, Birngruber R. “Mechanism of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15: 32–43 (1994).CrossRefGoogle Scholar
  84. 84.
    Flotte TJ, Frisoli JK, Goetschkes M, Doukas AG. “Laser-induced shock wave effects on red blood cells,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction II, SPIE, Bellingham, 1427: 36–44 (1991).Google Scholar
  85. 85.
    Walsh JT, Deutsch TF. “Pulsed CO2 laser tissue ablation: measurement of the ablation rate,” Lasers Surg. Med. 8: 264–275 (1988).CrossRefGoogle Scholar
  86. 86.
    Esenaliev RO, Oraevsky AA, Lethokov VS. “Laser ablation of atherosclerotic blood vessel tissue under various irradiation conditions,” IEEE Trans. Biomed. Eng. 36: 1188–1194 (1989).CrossRefGoogle Scholar
  87. 87.
    Jansen ED, van Leeuwen TG, Motamedi M, Borst C, and Welch AJ. Partial vaporization model for pulsed mid-infrared laser ablation of water, J. Appl. Phys., (in press).Google Scholar
  88. 88.
    88. Leeuwen TG van, Jansen ED, Welch AJ, Borst C, “Excimer laser induced bubble: dimensions, theory and implications for laser angioplasty,” Lasers Siurg. Med. (accepted for publication).Google Scholar
  89. 89.
    Leeuwen TG van, Veen MJ van der, Verdaasdonk RM, Borst C. “Tissue ablation by holmium:YSGG laser pulses through saline and blood,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction II, SPIE, Bellingham, 1427: 214–219 (1991).Google Scholar
  90. 90.
    Leeuwen TG van, Jansen ED, Motamedi M, Borst C, Welch AJ. “Excimer laser ablation of soft tissue: a study of the content of fast expanding and collapsing bubbles,” IEEE J. Quantum Electron, 30: 1339–1345 (1994).ADSCrossRefGoogle Scholar
  91. 91.
    Jacques SL, Gofstein G. “Laser-flash photographic studies of Er:YAG laser ablation of water,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction II, SPIE, Bellingham, 1427: 63–67 (1991).Google Scholar
  92. 92.
    Oraevsky AA, Esenaliev RO, Lethokov VS. “Temporal characteristics of mechanism of atherosclerotic tissue ablation by nanosecond and picosecond laser pulses,” Lasers Life Sci. 5: 75–93 (1992).Google Scholar
  93. 93.
    Domankevitz Y, Lee MS, Nishioka NS. “Pulsed holmium laser tissue ablation threshold studies,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction III, SPIE, Bellingham, 1646: 42–45 (1992).Google Scholar
  94. 94.
    Singleton DL, Paraskevopoulos G, Taylor RS, Higginson LAJ. “Excimer laser angioplasty: tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23: 1772–1782 (1987).ADSCrossRefGoogle Scholar
  95. 95.
    Zheltov GI, Glazkov VN, Kirkovsky AI, Podoltsev AS. “The action of 10-6–10-8 s laser pulses on biological tissues,” Lasers Life Sci. 4: 135–145 (1991).Google Scholar
  96. 96.
    Oraevsky AA, Jacques SL, Pettit GH, Tittel FK, Henry PD. “XeCl laser ablation of atherosclerotic aorta: luminescence spectroscopy of ablation products,” Lasers Surg. Med. 13: 168–178 (1993).CrossRefGoogle Scholar
  97. 97.
    Erven L van, Leeuwen TG van, Post MJ, Veen MJ van der, Velema E, Borst C. “Mid-infrared pulsed laser ablation of the arterial wall: mechanical origin of ‘acoustic’ wall damage and its effect on wall healing,” J. Thorac. Vasc. Surg. 104: 1053–1059 (1992).Google Scholar
  98. 98.
    Higginson LAJ, Farrell EM, Walley VM, Taylor RS, Keon WJ. “Arterial response to excimer and argon laser irradiation in the artherosclerotic swine,” Lasers Med. Sci. 4: 85–92 (1988).CrossRefGoogle Scholar
  99. 99.
    Prevosti LG, Leon MB, Smith PD, Dodd JT, Bonner RF, Robinowitz M, Clark RE, Virmani R. “Early and late healing responses of normal canine artery to excimer laser irradiation,” J. Thorac. Cardiovasc. Surg. 96: 150–156 (1988).Google Scholar
  100. 100.
    Isner JM, Pickering JG, Mosseri M. “Laser-induced dissections: pathogenesis and implications for therapy” (editorial comment), J. Am. Coll. Cardiol. 19(7): 1619–1621 (1992).CrossRefGoogle Scholar
  101. 101.
    Isner JM, DeJesus SR, Clarke RH, Gal D, Rongione AJ, Donaldson RF. “Mechanism of laser ablation in an absorbing fluid fluid field,” Lasers Surg. Med. 8: 543–554 (1988).CrossRefGoogle Scholar
  102. 102.
    Leeuwen TG van, Meertens JH, Velema E, Post MJ, Borst C. “Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit,” Circulation 87: 1258–1263 (1993).CrossRefGoogle Scholar
  103. 103.
    Litvack F, Grundfest WS, Goldenberg T, Laudenslager J, Forrester JS. “Excimer laser angioplasty,” in E.J. Topol (ed.), Textbook of Interventional Cardiology, W.B. Saunders, Philadelphia, 1990, pp. 682–699.Google Scholar
  104. 104.
    Isner JM, Gal D, Steg PG, DeJesus ST, Rongione AJ, Halaburka KR, Slovenkai GA, Clarke RH. “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8: 223–232 (1988).CrossRefGoogle Scholar
  105. 105.
    Sanborn TA, Alexopoulos D, Marmur JD, Kahn H, Badimon JJ, Badimon L, Fuster V. “Coronary excimer laser angioplasty: reduced complications and indium-111 platelet accumulation compared with thermal laser angioplasty,” J. Am. Coll. Cardiol. 16: 502–506 (1990).CrossRefGoogle Scholar
  106. 106.
    Marmur JD, Sanborn TA, Kahn H, Badimon JJ, Badimon L, Fuster V. “Acute biologic response to excimer versus thermal laser angioplasty in experimental atherosclerosis,” J. Am. Coll. Cardiol. 17: 978–984 (1991).CrossRefGoogle Scholar
  107. 107.
    Hanke H, Haase KK, Hanke S, Oberhoff M, Hassenstein S, Betz E, Karsch KR. “Morphological changes and smooth muscle cell proliferation after experimental excimer laser treatment,” Circulation 83: 1380–1389 (1991).CrossRefGoogle Scholar
  108. 108.
    Isner JM, Rosenfeld K, White CJ, Ramee S, Kearney M, Pieczek A, Langevin E, Razvi S. “In vitro assessment of vascular pathology resulting from laser irradiation,” Circulation 85: 2185–2196 (1992).CrossRefGoogle Scholar
  109. 109.
    Rosenfeldt FL, Chi L, Black AJR, Waugh JR, Pedersen JS, Levatter J. “Excimer laser angioplasty in the atherosclerotic rabbit,” Am. Heart J. 124: 349–355 (1992).CrossRefGoogle Scholar
  110. 110.
    Rodriquez ER, Phelan JM, Hursey TL, Wytaske FFH, Parillo JE, Klein LW, Schaer GL. “Morphologic characterization of the acute and healing response to excimer laser ablation (ELA) in canine coronary arteries,” Circulation 84(II): 736 (1991).Google Scholar
  111. 111.
    Gregory KW, Prince MR, LaMuraglia GM, Flotte TJ, Buckley L, Tobis JM, Ziskind AA, Caplin J, Anderson RR. “Effect of blood upon the selective ablation of atherosclerotic plaque with a pulsed dye laser,” Lasers Surg. Med. 10: 533–543 (1990).CrossRefGoogle Scholar
  112. 112.
    Lee G, Mason DT. “Excimer coronary laser angioplasty: It’s time for a critical evaluation,” Am. J. Cardiol. 69: 1640–1643 (1992).CrossRefGoogle Scholar
  113. 113.
    King SB. “Prediction of acute closure in percutaneous transluminal coronary angioplasty,” Circulation 81(IV): 5–8 (1990).Google Scholar
  114. 114.
    Holmes DR, Holubkov R, Vlietstra RE. “Co-investigators of NHLBI PTCA Registry: Comparison of complications during percutaneous transluminal coronary angioplasty from 1977 to 1981 and from 1985 to 1986: the National Heart Lung and Blood Institute Percutaneous Transluminal Coronary Angioplasty Registry,” J. Am. Coll. Cardiol. 12: 1149–1155 (1988).CrossRefGoogle Scholar
  115. 115.
    Baumbach A, Bittl JA, Fleck E, Geschwind HJ, Sanborn TA, Tcheng JE, and Karsch KR. Acute complications of excimer laser coronary angioplasty: a detailed analysis of multicenter results. Coinvestigators of the U.S. and European Percutaneous Excimer Laser Coronary Angioplasty (PELCA) Registries, J. Am. Coll. Cardiol. 23: 1305–1313 (1994).CrossRefGoogle Scholar
  116. 116.
    Knopf WD, Parr KL, Moses JW, Cundey PE, Cohen MD, Topaz O, de Marchena E, Lai PY, Kurnik PB, Murphy DR. “Multicenter registry report: holmium laser angioplasty in coronary arteries,” Circulation 86(I) (abstr): 511 (1992).Google Scholar
  117. 117.
    Reeder GS, Bresnahan JF, Holmes DRJ, Litvack F. “Excimer laser coronary angioplasty: results in restenosis versus de novo coronary lesions. Excimer Laser Coronary Angioplasty Investigators,” Catheter. Cardiovasc. Diagn. 25: 195–199 (1992).CrossRefGoogle Scholar
  118. 118.
    Kent KM, Sakler LF, Kehoe MK, Pichard AD. “Stand alone excimer laser angioplasty,” Circulation 84(I1): 363 (1991).Google Scholar
  119. 119.
    Nakamura F, Kvasnicka J, Uchida Y, Geschwind HJ. “Percutaneous angioscopic evaluation of luminal changes induced by excimer laser angioplasty,” Am. Heart J. 124: 1467–1472 (1992).CrossRefGoogle Scholar
  120. 120.
    Tenaglia AN, Buller CE, Kisslo KB, Stack RS, Davidson CJ. “Mechanism of balloon angioplasty and directional coronary atherectomy as assessed by intracoronary ultrasound,” J. Am. Coll. Cardiol. 20: 685–691 (1992).CrossRefGoogle Scholar
  121. 121.
    Honye J, Mahon DJ, Jain A, White CJ, Ramee SR, Wallis JB, Al-Zarka A, Tobis JM. “Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging,” Circulation 85: 1012–1025 (1992).Google Scholar
  122. 122.
    Bittl JA, Ryan TJ Jr, Keaney JF Jr, Tcheng JE, Ellis SG, Isner JM, and Sanbom TA. Coronary artery perforation during excimer laser coronary angioplasty. The percutaneous Excimer Laser Coronary Angioplasty Registry, J. Am. Coll. Cardiol. 21: 1158–1165 (1993).CrossRefGoogle Scholar
  123. 123.
    Israel DH, Marmur JD, Sanborn TA. “Excimer laser-facilitated balloon angioplasty of a nondilatable lesion,” J. Am. Coll. Cardiol. 18: 1118–1119 (1991).CrossRefGoogle Scholar
  124. 124.
    Ozbek C, Wolk T, Bach R, Dyckmans J, Schieffer H. “Excimer laser coronary angioplasty after primary unsuccessful PTCA,” Z. Kardiol. 81: 152–156 (1992).Google Scholar
  125. 125.
    Watson LE, Gantt S. “Excimer laser coronary angioplasty for failed PTCA,” Catheter. Cardiovasc. Diagn. 26: 285–290 (1992).CrossRefGoogle Scholar
  126. 126.
    Kvasnicka J, Nakamura F, Lange F, Geschwind HJ. “Tissue ablation with excimer laser and multiple fiber catheters: effects of optical fiber density and fluences,” J. Interv. Card. 5: 263–273 (1993).CrossRefGoogle Scholar
  127. 127.
    Parsa P, Jacques SL, Nishioka NS. “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opti. 28: 2325–2330 (1989).ADSCrossRefGoogle Scholar
  128. 128.
    Walsh JT Jr, Deutsch TF. “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med. 9: 327–337 (1989).CrossRefGoogle Scholar
  129. 129.
    Gijsbers GH, Selten FM, Gemert MJC van. “CW laser ablation velocities as a function of absorption in an experimental one-dimensional tissue model,” Lasers Surg. Med. 11: 287–296 (1991).CrossRefGoogle Scholar
  130. 130.
    Furzikov NP. “Model and description of UV laser ablation of the cornea,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction I, SPIE, Bellingham, 1202: 286–298 (1990).Google Scholar
  131. 131.
    Agah R, Motamedi M, Dalmia P. “Changes in optical constants of thermally damaged arterial tissue as a function of wavelength,” Lasers Surg. Med. Suppl. 2 (52): 15 (1990).Google Scholar
  132. 132.
    Gourgouliatos ZF. “Behavior of optical properties of tissue as a function of temperature,” Masters Thesis, The University of Texas at Austin, 1986.Google Scholar
  133. 133.
    Rastegar S, Kim BM, Jacques SL. “Role of temperature dependence of optical properties in laser irradiation of biological tissue,” in Jacques SL, Katzir A (eds.), Laser-Tissue Interaction III, SPIE, Bellingham, 1646: 228–231 (1992).Google Scholar
  134. 134.
    Splinter R, Svenson RH, Littmann L, Tuntelder JR, Chuang CH, Tatsis GP, Thompson M. “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11: 117–124 (1991).Google Scholar
  135. 135.
    Gemert MJC van, Welch AJ, Jacques SL, Cheong WF, Star WM. “Light distribution, optical properties, and cardiovascular tissues,” in Abela GS (ed.), Lasers in Cardiovascular Medicine and Surgery: Fundamentals and Techniques, Kluwer Academic Publishers, Boston, Dordrecht, London, pp. 93–110 (1990).CrossRefGoogle Scholar
  136. 136.
    Pettit GH, Ediger MN. “Pump/probe transmission measurements of corneal tissue during excimer laser ablation,” Lasers Surg. Med. 13: 363–367 (1993).CrossRefGoogle Scholar
  137. 137.
    Pettit GH, Sauerbry R. “Fluence-dependent transmission of polyimide at 248 nm under laser ablation conditions,” Appl. Phys. Le. 58: 793–795 (1991).ADSCrossRefGoogle Scholar
  138. 138.
    Frisoli JK, Hefetz Y, Deutsch TF. “Time-resolved UV absorption of polyimide-implications for laser ablation,” Appl. Phys. B 52: 168–172 (1991).ADSCrossRefGoogle Scholar
  139. 139.
    Collins JR. “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26: 771–779 (1925).ADSCrossRefGoogle Scholar
  140. 140.
    Hale GM, Querry MR, Rusk AN, Williams D. “Influence of temperature on the spectrum of water,” J. Opt. Soc. Amer. 62: 1103–1108 (1972).ADSCrossRefGoogle Scholar
  141. 141.
    Pinkley LW, Sethna PP, Williams D. “Optical constants of water in the infrared: influence of temperature,” J. Opt. Soc. Am. 67: 494–499 (1977).ADSCrossRefGoogle Scholar
  142. 142.
    Falk M, Ford TA. “Infrared spectrum and structure of liquid water,” Can. J. Chem. 44: 1699–1707 (1966).CrossRefGoogle Scholar
  143. 143.
    Vodopyanov KL. “Saturation studies of H2O and HDO near 3400/cm using intense picosecond laser pulses,” J. Chem. Phys. 94: 5389–5393 (1991).ADSCrossRefGoogle Scholar
  144. 144.
    Cummings JP, Walsh JT. “Thermal changes in the absorption spectrum of water near 6.1 um,” Lasers Surg. Med. Suppl. 5 (7): 2 (1993).Google Scholar
  145. 145.
    Walsh JT. Personal communications, 1992/1993.Google Scholar
  146. 146.
    Cummings JP, Walsh JT. “Erbium laser ablation: the effect of dynamic optical properties,” Appl. Phys. Lett. 62: 1988–1990 (1993).ADSCrossRefGoogle Scholar
  147. 147.
    Jansen ED, Motamedi M, Welch AJ. “Temperature dependence of mid infrared laser radiation absorption by water,” Lasers Surg. Med. Suppl. 5(9): 3 (1993).Google Scholar
  148. 148.
    Jansen ED, Leeuwen TG van, Motamedi M, Borst C, Welch AJ. “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14: 258–268 (1994).CrossRefGoogle Scholar
  149. 149.
    Curnutte B, Bandekar J. “The intramolecular vibrations of the water molecule in the liquid state,” J. Mol. Spectrosc. 41: 500–511 (1972).ADSCrossRefGoogle Scholar
  150. 150.
    Bryan JB, Curnutte B. “A normal coordinate analysis based on the local structure of liquid water,” J. Mol: Spectrosc. 41: 512–533 (1972).ADSCrossRefGoogle Scholar
  151. 151.
    Graener H, Seifert G, Laubereau A. “New spectroscopy of water using tunable picosecond pulses in the infrared,” Phys. Rev. Lett. 66: 2092–2095 (1991).ADSCrossRefGoogle Scholar
  152. 152.
    Irvine WM, Pollack JB. “Infrared optical properties of water and ice spheres,” Icarus 8: 324–360 (1968).ADSCrossRefGoogle Scholar
  153. 153.
    Schomacker KT, Domankevitz Y, Flotte TJ, Deutsch TF. “Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage,” Lasers Surg. Med. 11: 141–151 (1991).CrossRefGoogle Scholar
  154. 154.
    Leeuwen TG van, Motamedi M, Verdaasdonk RM, Borst C. “Interaction of pulsed IR laser radiation with fluid: implication for tissue ablation,” Lasers Surg. Med. Suppl. 3: 16 (1991).Google Scholar
  155. 155.
    Lin CP, Stern D, Puliafito CA. “High-speed photography of Er:YAG laser ablation in fluid: Implication for vitreous surgery,” Invest. Ophthalmol. Vis. Sci. 31: 2546–2550 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ton G. Van Leeuwen
    • 1
  • E. Duco Jansen
    • 2
  • Massoud Motamedi
    • 3
  • Cornelius Borst
    • 4
  • A. J. Welch
    • 5
  1. 1.Department of Cardiology, Heart Lung InstituteUtrecht University Hospital and the Interuniversity Cardiology Institute of The NetherlandsUtrechtThe Netherlands
  2. 2.Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA
  3. 3.Biomedical Laser and Spectroscopy ProgramThe University of Texas Medical Branch at GalvestonGalvestonUSA
  4. 4.Department of Cardiology, Heart Lung InstituteUtrecht University HospitalUtrechtThe Netherlands
  5. 5.Department of Electrical and Computer EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations