Bragg Gratings in Optical Fibers: Fundamentals and Applications

  • A. Othonos
Chapter

Abstract

The development of fiber optics has revolutionized the field of telecommunications making possible high-quality, high-capacity, long distance telephone links Over the past three decades, the advancements in optical fiber has undoubtedly improved and reshaped fiber optic technology. Today optical fibers are synonymous with the word “telecommunication”. In addition to applications in telecommunications, optical fibers are also utilized in the rapidly growing field of fiber sensors. Despite the improvements in optical fiber manufacturing and advancements in the field in general, basic optical components such as mirrors, wavelength filters, and partial reflectors have been a challenge to integrate with fiber optics. Recently, however, all these have changed with the ability to alter the core index of refraction in a single mode optical fiber by optical absorption of UV light. This photosensitivity of optical fibers allows the fabrication of phase structures in the core of fibers called the fiber Bragg grating (figure 2.1). Photosensitivity refers to a permanent change in the index of refraction of the fiber core when exposed to light with characteristic wavelength and intensity that depend on the core material. The fiber Bragg grating can perform many primary functions, such as reflection and filtering, in a highly efficient, low loss manner. This versatility has stimulated a number of significant innovations [1–3].

Keywords

Optical Fiber Fiber Laser Fiber Bragg Grating Electronics Letter Phase Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Othonos, A and Kalli, K. (1999) Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing,Artech House.Google Scholar
  2. 2.
    Bennion, I., Williams, J. A. R., Zhang, L., Sugden, K. and Doran, N. J. (1996) UV-written in-fibre Bragg gratings. Optical and Quantum Electronics, 28, 93–135.CrossRefGoogle Scholar
  3. 3.
    Othonos, A. (1997) Fiber Bragg gratings. Review of Scientific Instruments, 68, 4309–41.ADSCrossRefGoogle Scholar
  4. 4.
    Hill, K. O., Fujii, Y., Johnson, D. C. and Kawasaki, B. S. (1978) Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied Physics Letters, 32, 647–9.ADSCrossRefGoogle Scholar
  5. 5.
    Kawasaki, B. S., Hill, K. O., Johnson, D. C. and Fujii, Y. (1978) Narrow-band Bragg reflectors in optical fibers. Optics Letters, 3, 66–8.ADSCrossRefGoogle Scholar
  6. 6.
    Lam, D. K. W. and Garside, B. K. (1981) Characterization of single-mode optical fiber filters. Applied Optics, 20, 440–5.ADSCrossRefGoogle Scholar
  7. 7.
    Stone, J. (1987) Photorefractivity in Ge02-doped silica fibers. Journal of Applied Physics, 62, 4371–4.ADSCrossRefGoogle Scholar
  8. 8.
    Meltz, G., Morey, W. W. and Glenn, W. H. (1989) Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters, 14, 823–5.ADSCrossRefGoogle Scholar
  9. 9.
    Hill, K. O., Bilodeau, F., Malo, B. and Johnson, D. C. (1991) Birefringent photosensitivity in monomode optical fiber: Application to the external writing of rocking filters. Electronics Letters, 27, 1548–50.CrossRefGoogle Scholar
  10. 10.
    Lemaire, P. J., Atkins, R. M., Mizrahi, V. and Reed, W. A. (1993) High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in Ge02 doped optical fibres. Electronics Letters, 29, 1191–3.CrossRefGoogle Scholar
  11. 11.
    Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C. and Albert, J. (1993) Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase-mask. Applied Physics Letters, 62, 1035–7.Google Scholar
  12. 12.
    Hosono, H., Abe, Y., Kinser, D. L., Weeks, R. A., Muta, K. and Kawazoe, H. (1992) Nature and origin of the 5-eV band in Si02: Ge02 glasses. Physical Review B, 46, 11445–51.ADSCrossRefGoogle Scholar
  13. 13.
    Nishii, J., Fukumi, K., Yamanaka, H., Kawamura, K., Hosono, H. and Kawazoe, H. (1995) Photochemical reactions in Ge02-Si02 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser. Physical Review B, 52, 1661–5.ADSCrossRefGoogle Scholar
  14. 14.
    Russell, P. St. J., Hand, D. P., Chow, Y. T. and Poyntz-Wright, L. J. (1991) Optically-induced creation, transformation and organisation of defects and colour-centres in optical fibres. International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, Quebec City, Quebec, May 10–11, Proceedings SPIE, 1516, 47–54.Google Scholar
  15. 15.
    Albert, J., Malo, B., Hill, K. O., Bilodeau, F., Johnson, D. C. and Theriault, S. (1995) Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses. Applied Physics Letters, 67, 3529–31.ADSCrossRefGoogle Scholar
  16. 16.
    Hosono, H., Kawazeo, H. and Nishii, J. (1996) Defect formation in Si02: Ge02 glasses studied by irradiation with excimer laser light. Physical Review B, 52, R11921–3.ADSCrossRefGoogle Scholar
  17. 17.
    Hand, D. P. and Russell, P. St. J. (1990) Photoinduced refractive-index changes in germanosilicate fibers. Optics Letters, 15, 102–4.ADSCrossRefGoogle Scholar
  18. 18.
    Limberger, H. G., Fonjallaz, P.-Y., Salathe, R. P. and Cochet, F. (1996) Compaction-and photoelastic-induced index changes in fiber Bragg gratings. Applied Physics Letters, 68, 3069–71.ADSCrossRefGoogle Scholar
  19. 19.
    Poumellec, B., Niay, P., Douay, M. and Bayon, J. F. (1996) The UV-induced refractive index grating in Ge: Si02 preforms: additional CW experiments and the microscopic origin of the change in index. Journal of Physics D: Applied Physics, 29, 1842–56.Google Scholar
  20. 20.
    Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C., Morse, J. F., Kilian, A., Reinhart, L. and Oh, K. (1991) Photosensitivity in Eue+: Al2O3 doped core fiber: preliminary results and applications to mode converters. Conference on Optical Fiber Communication, Technical Digest Series (Optical Society of America, Washington, DC), 14, 14–7.Google Scholar
  21. 21.
    Broer, M. M., Cone, R. L. and Simpson, J. R. (1991) Ultraviolet-induced distributedfeeback gratings in Ce3+-doped silica optical fibers. Optics Letters, 16, 1391–3.ADSCrossRefGoogle Scholar
  22. 22.
    Bilodeau, F., Johnson, D. C., Malo, B., Vineberg, K. A., Hill, K. O., Morse, T. F., Kilian, A. and Reinhart, L. (1990) Ultraviolet-light photosensitivity in Era+-Ge-doped optical fiber. Optics Letters, 15, 1138–40.ADSCrossRefGoogle Scholar
  23. 23.
    Williams, D. L., Ainslie, B. J., Armitage, J. R., Kashyap, R. and Campbell, R. (1993) Enhanced UV photosensitivity in boron codoped germanosilicate fibres. Electronics Letters, 29, 45–7.Google Scholar
  24. 24.
    Niay, P., Bemage, P., Taunay, T., Xie, W. X., Boj, S., Delevaque, E., Poignant, H. and Monerie, M. (1994) Fabrication of Bragg gratings in fluorozirconate fibers and application to fiber lasers. Conference on Laser and Electro-Optics, Technical Digest Series (Optical Society of America, Washington, DC), 8, Paper CPD 91 /21.Google Scholar
  25. 25.
    Poumellec, B. and Kherbouche, F. (1996) The photorefractive Bragg gratings in the fibers for telecommunications. Journal of Physics III France, 6, 1595–624.Google Scholar
  26. 26.
    Niay, P., Bemage, P., Legoubin, S., Douay, M., Xie, W. X., Bayon, J. F., Georges, T,. Monerie, M. and Poumellec, B. (1994) Behavior of spectral transmissions of Bragg gratings written in germania-doped fibers: Writing and erasing experiments using pulsed or CW UV exposure. Optics Communications, 113, 176–92.Google Scholar
  27. 27.
    Poumellec, B., Guenot, P., Riant, I., Sansonetti, P., Niay, P., Bernage, P. and Bayon, J. F. (1995) UV induced densification during Bragg grating inscription in Ge: SiO2 preforms. Optical Materials, 4, 441–9.ADSCrossRefGoogle Scholar
  28. 28.
    Patrick, H. and Gilbert, S. L. (1993) Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber. Optics Letters, 18, 1484–6.ADSCrossRefGoogle Scholar
  29. 29.
    Atkins, R. M., Mizrahi, V. and Erdogan, T. (1993) 248nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity. Electronics Letters, 29, 385–7.Google Scholar
  30. 30.
    Mizrahi, V. and Atkins, R. M. (1992) Constant fluorescence during phase grating formation and defect band bleaching in optical fibres under 5.1eV laser exposure. Electronics Letters, 28, 2210–1.CrossRefGoogle Scholar
  31. 31.
    Anderson, D. Z., Mizrahi, V., Erdogan, T. and White, A. E. (1993) Production of in-fibre gratings using a diffractive optical element. Electronics Letters, 29, 566–8.CrossRefGoogle Scholar
  32. 32.
    Niay, P., Bernage, P., Douay, M., Taunay, T., Xie, W. X., Martenelli, G., Bayon, J. F., Poignant, H. and Delevaque, E. (1995) Bragg grating photoinscription within various types of fibers and glasses. Proceedings of Topical Meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Technical Digest Series (Optical Society of America, Washington, DC), 22, Portland, OR, Paper SuAl, 66–9.Google Scholar
  33. 33.
    Riant, I. and Haller, F. (1997) Study of the photosensitivity at 193nm and comparison with photosensitivity at 240nm influence of fiber tension: Type IIA aging. IEEE Journal of Lightwave Technology, 15, 1464–9.CrossRefGoogle Scholar
  34. 34.
    Xie, W. X., Niay, P., Bernage, P., Douay, M., Bayon, J. F., Georges, T., Monerie, M. and Poumellec, B. (1993) Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings written within germanosilicate fibres. Optics Communications, 104, 185–95.ADSCrossRefGoogle Scholar
  35. 35.
    Archambault, J. L., Reekie, L. and Russell, P. St. J. (1993) 100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses. Electronics Letters, 29, 453–5.Google Scholar
  36. 36.
    Erdogan, T., Mizrahi, V., Lemaire, P. J. and Monroe, D. (1994) Decay of ultraviolet-induced fiber Bragg gratings. Journal of Applied Physics, 76, 73–80.ADSCrossRefGoogle Scholar
  37. 37.
    Dong, L. and Liu, W. F. (1997) Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193nm in a boron-codoped germanosilicate fiber. Applied Optics, 36, 8222–6.ADSCrossRefGoogle Scholar
  38. 38.
    Douay, M., Xie, W. X., Taunay, T., Bemage, P., Niay, P., Cordier, P., Poumellec, B., Dong, L., Bayhon, J. F., Poignant, H. and Delevaque, E. (1997) Densification involved in the UV-based photosensitivity of silica glasses and optical fibers. IEEE Journal of Lightwave Technology, 15, 1329–42.CrossRefGoogle Scholar
  39. 39.
    Parent, M., Bures, J., Lacroix, S. and Lapierre, J. (1985) Proprietes de polarisation des reflecteurs de Bragg induits par photosensibilite dans les fibres optiques monomodes. Applied Optics, 24, 354–7.ADSCrossRefGoogle Scholar
  40. 40.
    Meltz, G. and Morey, W. W. (1991) Bragg grating formation and germanosilicate fiber photosensitivity. International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, Quebec City, Quebec, May 10–11, Proceedings SPIE, 1516, 185–99.ADSCrossRefGoogle Scholar
  41. 41.
    Meyer, T., Nicati, P. A., Robert, P. A., Varelas, D., Limberger, H. G. and Salathe, R. P. (1996) Reversibility of photoinduced birefringence in ultralow-birefringence fibers. Optics Letters, 21, 1661–3.ADSCrossRefGoogle Scholar
  42. 42.
    Russell, P. St. J. and Hand, D. P. (1990) Rocking filter formation in photosensitive high birefringence optical fibres. Electronics Letters, 52, 1846–8.CrossRefGoogle Scholar
  43. 43.
    Ouellette, F., Gagnon, D. and Poirier, M. (1991) Permanent photoinduced birefringence in a Ge-doped fiber. Applied Physics Letters, 58, 1813–5.ADSCrossRefGoogle Scholar
  44. 44.
    Lauzon, J., Gagnon, D., LaRochelle, S., Blouin, A. and Ouellette, F. (1992) Dynamic polarization coupling in elliptical-core photosensitive optical fiber. Optics Letters, 17, 1664–6.ADSCrossRefGoogle Scholar
  45. 45.
    Mizrahi, V., DiGiovanni, D. J. D., Atkins, R. M., Grubb, S. G., Park, Y. K. and Delavaux, J. M. P. (1993) Stable single-mode erbium fiber-grating laser for digital communications. IEEE Journal of Lightwave Technology, 11, 2021–5.CrossRefGoogle Scholar
  46. 46.
    Kaiser, P. (1974) Drawing-induced coloration in vitreous silica fibers. Journal of the Optical Society of America, 64, 475–81.ADSCrossRefGoogle Scholar
  47. 47.
    Friebele, E. J., Askins, C. G., Gingerich, M. E. and Long, K. J. (1984) Optical fiber waveguides in radiation environments II. Nuclear Instruments and Methods in Physics Research B, 1, 355–69ADSCrossRefGoogle Scholar
  48. 48.
    Osterberg, U. and Margulis, W. (1986) Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber. Optics Letters, 11, 516–8.ADSCrossRefGoogle Scholar
  49. 49.
    Stolen, R. H. and Tom, H. W. K. (1987) Self-organized phase-matched harmonic generation in optical fibers. Optics Letters, 12, 585–7.ADSCrossRefGoogle Scholar
  50. 50.
    Anderson, D. Z. (1989) Efficient second-harmonic generation in glass fibers: The possible role of photo-induced charge redistibution. Nonlinear Properties of Materials, SPIE Proceedings, 1148, 186–96.ADSCrossRefGoogle Scholar
  51. 51.
    Osterberg, U. and Margulis, W. (1987) Experimental studies on efficient frequency doubling in glass optical fibers. Optics Letters, 12, 57–9.ADSCrossRefGoogle Scholar
  52. 52.
    Anoikin, E. V., Dianov, E. M., Kazansky, P. G. and Stepanov, D. Yu. (1990) Photoinduced second-harmonic generation in gamma-ray-irradiated optical fibers. Optics Letters, 15, 834–5.ADSCrossRefGoogle Scholar
  53. 53.
    Weeks, R. A. (1956) Journal of Applied Physics, 27, 1376–81.ADSCrossRefGoogle Scholar
  54. 54.
    Neustruev, V. B. (1994) Colour centres in germanosilicate glass and optical fibres. Journal of Physics, Condensed Matter, 6, 6901–36.ADSCrossRefGoogle Scholar
  55. 55.
    Jackson, J. M., Wells, M. E., Kordas, G., Kinser, D. L., Weeks, R. A. and Magruder III, R. H. (1985) Preparation effects on the UV optical properties of Ge02 glasses. Journal of Applied Physics, 58, 2308–11.Google Scholar
  56. 56.
    Yuen, M. J. (1982) Ultraviolet absorption studies of germanium silicate glasses. Applied Optics, 21, 136–40.ADSCrossRefGoogle Scholar
  57. 57.
    Friebele, E. J., Griscom, D. L. and Sigel Jr, G. H. (1974) Defect centers in a germanium-doped silica-core optical fiber. Journal of Applied Physics, 45, 3424–8.ADSCrossRefGoogle Scholar
  58. 58.
    Tsai, T. E., Griscom, D. L. and Friebele, E. J. (1987) On the structure of Ge-associated defect centers in irradiated high purity Ge02 and Ge-doped Si02 glasses. Diffusion and Defect Data, 53–54, 469–76.CrossRefGoogle Scholar
  59. 59.
    Tsai, T. E., Griscom, D. L., Friebele, E. J. and Fleming, J. W. (1987) Radiation induced defect centers in high-purity Ge02 glasses. Journal of Applied Physics, 62, 2264–8.ADSCrossRefGoogle Scholar
  60. 60.
    Friebele, E. J. and Griscom, D. L. (1986) Color centers in glass optical fiber waveguides. Materials Research Society Symposium Proceedings, 61, 319–31.CrossRefGoogle Scholar
  61. 61.
    Tsai, T. E. and Griscom, D. L. (1991) Defect centers and photoinduced self-organization in Ge-doped silica core fiber. International Workshop on Photoinduced Self- Organization Effects in Optical Fiber, Quebec City, Quebec, May 10–11, Proceedings SPIE, 1516, 14–28.ADSCrossRefGoogle Scholar
  62. 62.
    Dianov, E. M., Golant, K. M., Khrapko, R. R., Kurkov, A. S., Leconte, B., Douay, M., Bernage, P. and Niay, P. (1997) Grating formation in a germanium free silicon oxynitride fibre. Electronics Letters, 33, 236–8.Google Scholar
  63. 63.
    Albert, J., Malo, B., Bilodeau, F., Johnson, D. C., Hill, K. O., Hibino, Y. and Kawachi, M. (1994) Photosensitivity in Ge-doped silica optical waveguides and fibers with 193-nm light from an ArF excimer laser. Optics Letters, 19, 387–9.ADSGoogle Scholar
  64. 64.
    Noguchi, K., Shibata, N., Uesugi, N. and Negishi, Y. (1985) Loss increase for optical fibers exposed to hydrogen atmosphere. Journal of Lightwave Technology, LT-3, 23642.Google Scholar
  65. 65.
    Atkins, R. M., Lemaire, P. J., Erdogan, T. and Mizrahi, V. (1993) Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses. Electronics Letters, 29, 1234–5.CrossRefGoogle Scholar
  66. 66.
    Awazu, K., Kawazoe, H. and Yamane, M. (1990) Simultaneous generation of optical absorption abnds at 5.14 and 0.452 eV in 9Si02: Ge02 glasses heated under an H2 atmosphere. Journal of Applied Physics, 68, 2713–8.ADSCrossRefGoogle Scholar
  67. 67.
    Mizrahi, V., Lemaire, P. J., Erdogan, T., Reed, W. A., DiGiovanni, D. J. and Atkins, R. M. (1993) Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides. Applied Physics Letters, 63, 1727–9.ADSCrossRefGoogle Scholar
  68. 68.
    Bilodeau, F., Malo, B., Albert, J., Johnson, D. C., Hill, K. O., Hibino, Y., Abe, M. and Kawachi, M. (1993) Photosensitization of optical fiber and silica-on-silicon/silica waveguides. Optics Letters, 18, 953–5.ADSCrossRefGoogle Scholar
  69. 69.
    Camlibel, I., Pinnow, D. A. and Dabby, F. W. (1975) Optical aging characteristics of borosilicte clad fused silica core fiber optical waveguides. Applied Physics Letters, 26, 185–7.ADSCrossRefGoogle Scholar
  70. 70.
    Dyer, P. E., Farley, R. J., Giedl, R., Byron, K. C. and Reid, D. (1994) High reflectivity fibre gratings produced by incubated damage using a 193nm ArF laser. Electronics Letters, 30, 860–2.ADSCrossRefGoogle Scholar
  71. 71.
    Dong, L., Liu, W. F. and Reekie, L. (1996) Negative-index gratings formed by a 193-nm excimer laser. Optics Letters, 21, 2032–4.ADSCrossRefGoogle Scholar
  72. 72.
    Starodubov, D. S., Grubsky, V., Feinberg, J., Kobrin, B. and Juma, S (1997) Bragg grating fabrication in germanosilicate fibers by use of near-UV light: a new pathway for refractive-index changes. Optics Letters, 22, 1086–8.ADSCrossRefGoogle Scholar
  73. 73.
    Watanabe, Y., Nishii, J., Moriwaki, H., Furuhashi, G., Hosono, H. and Kawazoe, H. (1997) Permanent refractive-index changes in pure GeO2 glass slabs induced by irradiation with below-gap light. Conference on Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Technical Digest Series (Optical Society of America, Washington, DC), 17, 77–9.Google Scholar
  74. 74.
    Atkins, R. M. and Espindola, R. P. (1997) Photosensitivity and grating writing in hydrogen loaded germanosilicate core optical fibers at 325 and 351nm. Applied Physics Letters, 70, 1068–9.ADSCrossRefGoogle Scholar
  75. 75.
    Herman, P. R., Beckley, K. and Ness, S. (1997) 157-nm photosensitivity in germanosilicate waveguides. Conference on Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Technical Digest Series (Optical Society of America, Washington, DC), 17, 159–61.Google Scholar
  76. 76.
    Atkins, R. M. and Mizrahi, V. (1992) Observations of changes in UV absorption bands of singlemode germanosilicate core optical fibres on writing and thermally erasing refractive index gratings. Electronics Letters, 28, 1743–4.CrossRefGoogle Scholar
  77. 77.
    Psaila, D. C., Martijn de Sterke, C. and Ouellette, F. (1996) Fabrication of rocking filters at 193nm. Optics Letters, 21, 1550–2.ADSCrossRefGoogle Scholar
  78. 78.
    Dianov, E. M., Starodubov, D. S. and Frolov, A. A. (1996) UV argon laser induced luminescence changes in germanosilicate fibre preforms. Electronics Letters, 32, 246–7.CrossRefGoogle Scholar
  79. 79.
    Atkins, G. R., Wang, Z. H., McKenzie, D. R., Sceats, M. G., Poole, S. B. and Simmons, H. W. (1993) Control of defects in optical fibers–a study using cathodoluminescence spectroscopy. IEEE Journal of Lightwave Technology, 11, 1793–801.CrossRefGoogle Scholar
  80. 80.
    Svalgaard, M. (1995) Dynamics of ultraviolet induced luminescence and fiber Bragg grating formation in high fluence regime. Proceedings of Topical Meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Technical Digest Series (Optical Society of America, Washington, DC), 22, Portland, OR, Paper SuB 18, 160–4.Google Scholar
  81. 81.
    Dianov, E. M., Starodubov, D. S., Vasiliev, S. A., Frolov, A. A. and Medvedkov, O. I. (1997) Refractive-index gratings written by near-ultraviolet radiation. Optics Letters, 22, 221–3.ADSCrossRefGoogle Scholar
  82. 82.
    Williams, D. L., Davey, S. T., Kashyap, R., Armitage, J. R. and Ainslie, B. J. (1992) Direct observation of UV induced bleaching of 240nm absorption band in photosensitive germanosilicate glass fibres. Electronics Letters, 28, 369–71.ADSCrossRefGoogle Scholar
  83. 83.
    Simmons, K. D., LaRochelle, S., Mizrahi, V., Stegeman, G. I. and Griscom, D. L. (1991) Correlation of defect centers with wavelength-dependent photosensitive response in germania-doped silica optical fibers. Optics Letters, 16, 141–3.Google Scholar
  84. 84.
    Tsai, T. E., Friebele, E. J. and Griscom, D. L. (1993) Thermal stability of photoinduced gratings and paramagnetic centers in Ge-and Ge/P-doped silica optical fibers. Optics Letters, 18, 935–7.ADSCrossRefGoogle Scholar
  85. 85.
    Bernadin, J. P. and Lawandy, N. M. (1990) Dynamics of the formation of Bragg gratings in germanosilicate optical fibers. Optics Communications, 79, 194–9.ADSCrossRefGoogle Scholar
  86. 86.
    Chiang, K. S., Sceats, M. G. and Wong, D. (1993) Ultraviolet photolytic-induced changes in optical fibers: the thermal expansion coefficient. Optics Letters, 18, 965–7.ADSCrossRefGoogle Scholar
  87. 87.
    Hosono, H., Mizuguchi, M., Kawazoe, H. and Nishii, J. (1996) Correlation between GeE’ centers and optical absorption bands in Si02:Ge02 glasses. Japanese Journal of Applied Physics, 35, L234–6.ADSCrossRefGoogle Scholar
  88. 88.
    Malo, B., Albert, J., Johnson, D. C., Bilodeau, F. and Hill, K. 0. (1992) Elimination of photoinduced absorption in Ge-doped silica fibres by annealing of ultraviolet colour centres. Electronics Letters, 28, 1598–9.Google Scholar
  89. 89.
    Cordier, P., Doukhan, J. C., Fertein, E., Bernage, P., Niay, P., Bayon, J. F. and Georges, T. (1994) TEM characterization of structural changes in glass associated to Bragg grating inscription in a germanosilicate optical fiber preform. Optics Communications, 111, 26975.CrossRefGoogle Scholar
  90. 90.
    Sceats, M. G., Atkins, G. R. and Poole, S. B. (1993) Photo-induced index changes in optical fibers. Annual Reviews in Material Science, 23, 381–410.ADSCrossRefGoogle Scholar
  91. 91.
    Tsai, T. E., Williams, G. M. and Friebele, E. J. (1997) Index structure of fiber Bragg gratings in Ge-Si02 fibers. Optics Letters, 22, 224–6.ADSCrossRefGoogle Scholar
  92. 92.
    Dong, L., Archambault, J. L., Reekie, L., Russell, P. St. J. and Payne, D. N. (1995) Photoinduced absorption changes in germanosilicate preforms: evidence for the color-center model of photosensitivity. Applied Optics, 34, 3436–40.Google Scholar
  93. 93.
    Tsai, T. E., Friebele, E. J., Griscom, D. L. and Saifi, M. (1990) Defect centers induced by harmonic wavelength of 1.06µm light in Ge/P-doped fibers. Electro-Optics and NonLinear Optics, in Ceramic Transactions, 14, 127–36.Google Scholar
  94. 94.
    Fiori, C. and Devine, R. A. B. (1986) Evidence for a wide continuum of polymorphs in a-Si02. Physical Review B, 33, 2972–4.ADSCrossRefGoogle Scholar
  95. 95.
    Fiori, C. and Devine, R. A. B. (1986) Ultraviolet irradiation induced compaction and photoetching in amorphous thermal Si02. Materials Research Society Symposium Proceedings, 61, 187–95.CrossRefGoogle Scholar
  96. 96.
    Bazylenko, M. V., Moss, D. and Canning, J. (1998) Complex photosensitivity observed in germanosilica planar waveguides. Optics Letters, 23, 697–9.ADSCrossRefGoogle Scholar
  97. 97.
    Grimsditch, M. (1984) Polymorphism in amorphous Si02. Physical Review Letters, 52, 2379–81.ADSCrossRefGoogle Scholar
  98. 98.
    O’Reilly, E. P. and Robertson, J. (1983) Theory of defects in vitreous silicon dioxide. Physical Review B, 3780–95.Google Scholar
  99. 99.
    Fiori, C. and Devine, R. A. B. (1985) High resolution ultraviolet photoablation of SiOx films. Applied Physics Letters, 47, 361–2.ADSCrossRefGoogle Scholar
  100. 100.
    Poumellec, B., Riant, I., Niay, P., Bernage, P. and Bayon, J. F. (1995) UV induced densification during Bragg grating inscription in Ge:Si02 preforms: Interferometric microscopy investigations. Optical Materials, 4, 404–9.ADSCrossRefGoogle Scholar
  101. 101.
    Fonjallaz, P. Y., Limberger, H. G., Salathe, R. P., Cochet, F. and Leuenberger, B. (1995) Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings. Optics Letters, 20, 1346–8.ADSCrossRefGoogle Scholar
  102. 102.
    Attard, A. E. (1992) Fermi level shift in Bi12SiO20 vis photon-induced trap level occupation. Journal of Applied Physics, 71, 933–7.ADSCrossRefGoogle Scholar
  103. 103.
    Payne, F. P. (1989) Photorefractive gratings in single-mode optical fibres. Electronics Letters, 25, 498–9.ADSCrossRefGoogle Scholar
  104. 104.
    Lawandy, N. M. (1989) Light induced transport and delocalization in transparent amorphous systems. Optics Communications, 74, 180–4.ADSCrossRefGoogle Scholar
  105. 105.
    Miotello, A. and Kelly, R. (1992) Laser irradiation effects in Si+-implanted Si02. Nuclear Instruments and Methods in Physics Research B, 65, 217–22.ADSCrossRefGoogle Scholar
  106. 106.
    Russell, P. St. J., Archambault, J. L. and Reekie, L. (1993) Fibre gratings. Physics World,October, 41–6.Google Scholar
  107. 107.
    Hill, K. O. and Meltz, G. (1997) Fiber Bragg grating technology fundamentals and overview. IEEE Journal of Lightwave Technology, 15, 1263–76.CrossRefGoogle Scholar
  108. 108.
    Delevaque, E., Boj, S., Bayon, J. F., Poignant, H., Le Mellot, J. M., Monerie, M., Niay, P. and Bernage, P. (1995) Optical fiber design for strong gratings photoimprinting with radiation mode suppression. Conference on Optical Fiber Communication, Postdeadline paper PD5.Google Scholar
  109. 109.
    Albert, J., Hill, K. O., Malo, B., Theriault, S., Bilodeau, F., Johnson D. C. and Erickson L. E. (1995) Apodisation of the spectral response of fibre Bragg gratings using a phase mask with variable diffraction efficiency. Electronics Letters, 31, 222–3.Google Scholar
  110. 110.
    Malo, B., Theriault, S., Johnson, D. C., Bilodeau, F., Albert, J. and Hill, K. O. (1995) Apodised in-fibre Bragg grating reflectors photoimprinted using a phase mask. Electronics Letters, 31, 223–5.CrossRefGoogle Scholar
  111. 111.
    Kersey, A. D., Davis, M. A., Patrick, J., LeBlanc, M., Koo, K. P., Askins, C. G., Putnam,M. A. and Friebele, E. J. (1997) Fiber grating sensors. IEEE Journal of Lightwave Technology, 15, 1442–63.ADSCrossRefGoogle Scholar
  112. 112.
    Ball, G. A., Morey, W. W. and Glenn, W. H. (1991) Standing-wave monomode erbium fiber laser. IEEE Photonics Technology Letters, 3, 613–5.ADSCrossRefGoogle Scholar
  113. 113.
    Hillmer, H. et al (1994) Novel tunable semiconductor lasers using continuously chirped distributed feedback gratings with ultrahigh spatial precision. Applied Physics Letters, 65, 2130–2.ADSCrossRefGoogle Scholar
  114. 114.
    Ball, B. A. and Morey, W. W. (1992) Continuously tunable single-mode erbium fiber laser. Optics Letters, 17, 420–2.ADSCrossRefGoogle Scholar
  115. 115.
    Othonos, A., Alavie, A. T., Melle, S., Karr, S. E. and Measures, R. M. (1993) Fiber Bragg grating laser sensor. Optical Engineering, 32, 2841–6.ADSCrossRefGoogle Scholar
  116. 116.
    Ball, G. A., Morey, W. W. and Cheo, P. K. (1994) Fiber laser source/analyzer for Bragg grating sensor array interrogation. IEEE Journal of Lightwave Technology, 12, 700–3.CrossRefGoogle Scholar
  117. 117.
    Alavie, A. T., Karr, S. E., Othonos, A. and Measures, R. M. (1993) A multiplexed Bragg grating fiber laser sensor system. IEEE Photonics Technology Letters, 5, 1112–4.Google Scholar
  118. 118.
    Meltz, G. and Morey, W. W. (1991) Conference on Optical Fiber Communciation,Paper TuM2.Google Scholar
  119. 119.
    Kashyap, R., Wyatt, R. and McKee, P. F. (1993) Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings. Electronics Letters, 29, 1025–6.ADSCrossRefGoogle Scholar
  120. 120.
    Ouellette, F. (1987) Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Optics Letters, 12, 847–9.ADSCrossRefGoogle Scholar
  121. 121.
    Byron, K. C., Sugden, K., Bircheno, T. and Bennion, I. (1993) Fabrication of chirped Bragg gratings in photosensitive fibre. Electronics Letters, 29, 1659–60.Google Scholar
  122. 122.
    Sugden, K., Bennion, I., Molony, A. and Copner, N. J. (1994) Chirped gratings produced in photosensitive optical fibres by fibre deformation during exposure. Electronics Letters, 30, 440–2.Google Scholar
  123. 123.
    Kashyap, R., Mckee, P. F., Campbell, R. J. and Williams, D. L. (1994) Novel method of producing all fibre photoinduced chirped gratings. Electronics Letters, 30, 996–7.CrossRefGoogle Scholar
  124. 124.
    Russell, P. St. J. and Ulrich, R. (1985) Grating fiber-coupler as a high-resolution spectrometer. Optics Letter, 10, 291–3.ADSCrossRefGoogle Scholar
  125. 125.
    Askins, C. G., Tsai, T. E., Williams, G. M., Puttnam, M. A., Bashkasnsky, M. and Friebele, E. J. (1992) Fiber Bragg reflectors prepared by a single excimer pulse. Optics Letters, 17, 833–5.ADSCrossRefGoogle Scholar
  126. 126.
    Dong, L., Archambault, J. L., Reekie, L., Russell, P. St. J. and Payne, D. N. (1993) Single pulse Bragg gratings written during fibre drawing. Electronics Letters, 29, 15778.CrossRefGoogle Scholar
  127. 127.
    Othonos, A., Lee, X. and Measures, R. M. (1994) Superimposed multiple Bragg gratings. Electronics Letters, 30, 1972–3.CrossRefGoogle Scholar
  128. 128.
    Eggleton, B. J., Krug, P. A., Poladian, L. and Ouellette, F. (1994) Long periodic superstructure Bragg gratings in optical fibres. Electronics Letters, 30, 1620–2.CrossRefGoogle Scholar
  129. 129.
    Morey, W. W., Ball, G. A. and Meltz, G. (1994) Photoinduced Bragg gratings in optical fibers. Optics and Photonics News, Optical Society of America, February, 8–14.Google Scholar
  130. 130.
    Agrawal, G. P. and Dutta, N. K. (1993) Semiconductor Lasers, Van Nostrand Reinhold, New York, 1993, Chapter 7.Google Scholar
  131. 131.
    Haus, H. A. and Shank, C. V. (1976) IEEE Journal of Quantum Electronics,QE-12 352.Google Scholar
  132. 132.
    Alferness, R. C. et al (1986) Narrowband grating resonator filters in InGaAsP/InP waveguides. Applied Physics Letters, 49, 125–7.ADSCrossRefGoogle Scholar
  133. 133.
    Kashyap, R., McKee, P. F. and Armes, D. (1994) UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks. Electronics Letters, 30, 1977–8.CrossRefGoogle Scholar
  134. 134.
    Canning, J. and Sceats, M. G. (1994) Pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing. Electronics Letters, 30, 1344–5.ADSCrossRefGoogle Scholar
  135. 135.
    Uttamchandani, D. and Othonos, A. (1996) Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing. Optics Communications, 127, 2004.Google Scholar
  136. 136.
    Dockney, M. L., James, J. W. and Tatam, R. P. (1996) Fiber Bragg grating fabricated using a wavelength tunable source and a phase-mask based interferometer. Measurement Science and Technology, 7, 445.ADSCrossRefGoogle Scholar
  137. 137.
    Kashyap, R., Armitage, J. R., Wyatt, R., Davey, S. T. and Williams, D. L. (1990) Allfiber narrow band reflection grating at 1500 nm. Electronics Letters. 26, 730–2.ADSCrossRefGoogle Scholar
  138. 138.
    Eggleton, B. J., Krug, P. A. and Poladian, L. (1994) Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings. Optics Letters, 19, 877–80.ADSCrossRefGoogle Scholar
  139. 139.
    Limberger, H. G., Fonjallaz, P. Y., Lambelet, P., Zimmer, Ch., Salathe, R. P. and Gilgen, H. H. (1993) Photosensitivity and Self-Organization in Optical Fibers and Waveguides. SPIE, 2044, Photosensitivity and Self-Organization in Optical Fibers and Waveguides, 272.Google Scholar
  140. 140.
    Othonos, A. and Lee, X. (1995) Narrow linewidth excimer laser for inscribing Bragg gratings in optical fibers. Review of Scientific Instruments, 66, 3112–5.ADSCrossRefGoogle Scholar
  141. 141.
    Cannon, J. and Lee, S. (1994) Fiberoptic Product News. Laser Focus World, 2, 50–1.Google Scholar
  142. 142.
    Othonos, A. and Lee, X. (1995) Novel and improved methods of writing Bragg gratings with phase-masks. IEEE Photonics Technology Letters, 7, 1183–5.ADSCrossRefGoogle Scholar
  143. 143.
    Dyer, P. E., Farley, R. J. and Giedl, R. (1996) Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation. Optics Communications, 129, 98–108.ADSCrossRefGoogle Scholar
  144. 144.
    Kashyap, R., Armitage, J. R., Campbell, R. J., Williams, D. L., Maxwell, G. D., Ainslie, B. J. and Millar, C. A. (1993) Light-sensitive optical fibers and planar waveguides. BT Technol. J., 11, 150–60.Google Scholar
  145. 145.
    Malo, B., Hill, K. O., Bilodeau, F., Johnson, D. C., Albert, J. (1993) Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques. Electronics Letters, 29, 1668–9.CrossRefGoogle Scholar
  146. 146.
    Hill, K. O., Malo, B., Vineberg, K. A., Bilodeau, F., Johnson, D. C. and Skinner, I. (1990) Efficient mode-conversion in telecommunication fiber using externally written gratings. Electronics Letters, 26, 1270–2.CrossRefGoogle Scholar
  147. 147.
    Mihailov, S. and Gower, M. (1994) Recording of efficient high-order Bragg reflectors in optical fibers by mask image projection and single pulse exposure with an excimer laser. Electronics Letters, 30, 707–8.ADSCrossRefGoogle Scholar
  148. 148.
    Malo, B. Johnson, D. C., Bilodeau, F., Albert, J. and Hill, K. O. (1993) Single-excimerpulse writing of fiber gratings by use of a zero-order mulled phase-mask: grating spectral response and visualization of index perturbations. Optics Letters,18 1277–9.Google Scholar
  149. 149.
    Martin, J. and Ouellette, F. (1994) Novel writing technique of long and highly reflective in-fiber gratings. Electronics Letters, 30, 811–2.ADSCrossRefGoogle Scholar
  150. 150.
    Hill, K. O., Bilodeau, F., Malo, B., Kitagawa, T., Theriault, S., Johnson, C., Albert, J. and Takiguchi, K. (1994) Aperiodic in-fiber Bragg gratings for optical fiber dispersion compensation. Proc. OFC ‘84, PF-77 postdeadline paper.Google Scholar
  151. 151.
    Loh, H. W., Cole, M. J., Zervas, M. N., Barcelos, S. and Laming, R. I. (1995) Complex grating structures with uniform phase-masks based on the moving fiber-scanning beam technique. Optics Letters, 20, 2051.ADSCrossRefGoogle Scholar
  152. 152.
    Yariv, A. (1973) Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, QE-9, 919–33.Google Scholar
  153. 153.
    Yamada, M. and Sakuda, K. (1987) Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach. Applied Optics, 26, 3474–8.ADSCrossRefGoogle Scholar
  154. 154.
    Hill, K. O., Theriault, S., Malo, B., Bilodeau, F., Kitagawa, T., Johnson, D. C., Albert, J., Takiguchi, K., Kataoka, T. and Hagimoto, K. (1994) Chirped in-fiber Bragg grating disperion compensators: Linearization of the dispersion characteristic and demonstration of dispersion compensation in a 100 km, 10 Gbit/s optical fiber link Electonics Letters, 30, 1755–6.CrossRefGoogle Scholar
  155. 155.
    Mizrahi, V. and Sipe, J. E. (1993) Optical properties of photosensitive fiber phase gratings. IEEE Journal ofLightwave Technology, 11, 1513–7.ADSCrossRefGoogle Scholar
  156. 156.
    Kashyap, R., Swanton, A. and Armes, D. J. (1996) Simple technique for apodising chirped and unchirped fibre Bragg gratings. Electronics Letters, 32, 1226–8.CrossRefGoogle Scholar
  157. 157.
    Bird, D. M., Armitage, J. R., Kashyap, R., Fatah, R. M. A. and Cameron, K. H. (1991) Narrow line semiconductor laser using fiber grating. Electronics Letters, 27, 1115–6.CrossRefGoogle Scholar
  158. 158.
    Morton, P. A., Mizrahi, V., Andrekson, P. A., Tanbun-Ek, T., Logan, R. A., Lemaire, P., Coblentz, D. L., Sergent, A. M., Wecht, K. W. and Sciortino Jr., P. F. (1993) Mode-locked Hybrid soliton pulse source with extremely wide operating frequency range. IEEE Photonics Technology Letters, 5, 28–31.ADSCrossRefGoogle Scholar
  159. 159.
    Reekie, L., Mears, R. J., Poole, S. B. and Payne, D. N. (1986) Tunable single-mode fiber laser. Journal of Lightwave Technology, LT4, 956–7.Google Scholar
  160. 160.
    Ball, G. A., Morey, W. W. and Waters, J. P. (1990) Nd3+ fiber laser utilizing intra-core Bragg reflectors. Electronics Letters, 26, 1829–30.CrossRefGoogle Scholar
  161. 161.
    Ball, G. A. and Glenn, W. H. (1992) Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflector. Journal of Lightwave Technology, 10, 1338–43.ADSCrossRefGoogle Scholar
  162. 162.
    Ball, G. A., Glenn, W. H., Morey, W. W. and Cheo, P. K. (1993) Modeling of short, single-frequency fiber laser in high-gain fiber. IEEE Photonics Technology Letters, 5, 649–51.ADSCrossRefGoogle Scholar
  163. 163.
    Ball, G. A., Morey, W.W. and Cheo, P. K. (1993) Single-and multi-point fiber-laser sensors. IEEE Photonics Technology Letters, 5, 267–70.ADSCrossRefGoogle Scholar
  164. 164.
    Othonos, A., Lee, X. and Tsai, D. P. (1996) Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser. Optical Engineering, 35, 1088–92.ADSCrossRefGoogle Scholar
  165. 165.
    Zyskind, J. L., Mizrahi, V., DiGiovanni, D. J. and Sulhoff, J. W. (1992) Short single frequency erbium-doped fiber laser. Electronics Letters, 28, 1385–6.CrossRefGoogle Scholar
  166. 166.
    Zyskind, J. L., Sulhoff, J. W., Magill, P. D., Reichmann, K. C., Mizrahi, V. and DiGiovanni, D. J. (1993) Transmission at 2.5 Gbits/s over 654 km using an erbium-doped fiber grating laser source. Electronics Letters, 29, 1105–6.CrossRefGoogle Scholar
  167. 167.
    Kringlebotn, J. T., Archambault, J. L., Reekie, L., Townsend, J. E. and Payne, D. N. (1994) Highly efficient low-noise grating-feedback Er3+:Yb3+ co-doped fiber laser. Electronics. Letters, 30, 972–3.Google Scholar
  168. 168.
    Grubb, G. S. (1995) High-power 1.48 µm cascaded Raman laser in germanosilicate fibers in OFC’95, the Conference on Optical Communication, 8, Technical Digest Series, Postconference Edition, 41–2.Google Scholar
  169. 169.
    Hand, D. P. and Russell, P. St J. (1989) 7`h International Conference on Integrated Optics and Optical Fiber Communication (1000’89), Kobe, Technical Digest, 64.Google Scholar
  170. 170.
    Hill, K. O., Johnson, D. C., Bilodeau, F. and Faucher, S. (1987) Narrow-bandwidth optical waveguide transmission filters: A new design concept and applications to optical fiber communications. Electronics Letters, 23, 464–5.Google Scholar
  171. 171.
    Bilodeau, F., Hill, K.O., Malo, B., Johnson, D. C. and Albert, J. (1994) High-return-loss narrowband all-fiber bandpass Bragg transmission filter IEEE Photonics Technology Letters, 6, 80–2.Google Scholar
  172. 172.
    Johnson, D. C., Hill, K. O., Bilodeau, F. and Faucher, S. (1987) New design concept for a narrowband wavelength-selective optical tap and combiner. Electronics Letters, 23, 668–9.CrossRefGoogle Scholar
  173. 173.
    Fielding, A., Cullen, T. J., Rourke, H. N. (1994) Compact all-fiber wavelength drop and insert filter. Electronics Letters, 30, 2160–1.CrossRefGoogle Scholar
  174. 174.
    Reid, D. C., Ragdale, C. M., Bennion, I., Robbins, D. J., Buus, J. and Stewart, W. J. (1990) Phase-shifted Moiré grating fiber resonators. Electronics Letters, 26, 10–1.CrossRefGoogle Scholar
  175. 175.
    Legoubin, S., Fertein, E., Douay, M., Bernage, P., Niay, P., Bayon, F. and Georges, T. (1991) Formation of Moiré grating in core of germanosilicate fiber by transverse holographic double exposure method. Electronics Letters, 27, 1945–6.CrossRefGoogle Scholar
  176. 176.
    Zhang, L., Sugden, K., Bennion, I. and Molony, A. (1995) Wide-stopband chirped fiber moiré grating transmission filters. Electronics Letters, 31, 477–9.CrossRefGoogle Scholar
  177. 177.
    Morey, W. W. (1991) Tuneable narrow-line bandpass filter using fiber gratings in Proc. Conference on Optical Fiber Communications, OFC’91, San Diego, California PDP 20, 96.Google Scholar
  178. 178.
    Williams, J. A. R., Bennion, I., Sugden, K. and Doran, N. J. (1994) Fiber dispersion compensation using a chirped in fiber Bragg grating. Electronics Letters, 30, 985–7.CrossRefGoogle Scholar
  179. 179.
    Melle, S. M., Liu, K. and Measures, R. M. (1992) A passive wavelength demodulation system for guided-wave Bragg grating sensors. IEEE Photonics Technology Letters, 4, 516–8.ADSCrossRefGoogle Scholar
  180. 180.
    Kersey, A. D., Berkoff, T. A. and Morey, W. W. (1993) Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter. Optics Letters, 18, 13702.Google Scholar
  181. 181.
    Geiger, H., Xu, M. G., Eaton, N. C. and Dakin, J. P. (1995) Electronic tracking system for multiplexed fibre grating sensors. Electronics Letters, 31, 1006–7.CrossRefGoogle Scholar
  182. 182.
    Jackson, D. A., Lobo Ribeiro, A. B., Reekie, L. and Archambault, J. L. (1993) Simple multiplexing scheme for fiber-optic grating sensor network. Optics Letters, 18, 1192–4.ADSCrossRefGoogle Scholar
  183. 183.
    Kersey, A. D., Berkoff, T. A. and W Morey,. W. (1992) High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection. Electronics Letters, 28, 236–8.ADSCrossRefGoogle Scholar
  184. 184.
    Morey, W. W., Meltz, G. and Weiss, J. M. (1992) Evaluation of a fibre Bragg grating hydrostatic pressure sensor. Proceedings of the Optical Fiber Sensors Conference (OFS8), Monterey, USA, Postdeadline paper PD-4. 4.Google Scholar
  185. 185.
    Xu, M. G., Archambault, J. L., Reekie, L. and Dakin, J. P. (1994) Thermally-compensated bending gauge using surface mounted fibre gratings. International Journal of Optoelectronics, 9, 281–3.CrossRefGoogle Scholar
  186. 186.
    Xu, M. G., Archambault, J. L., Reekie, L. and Dakin, J. P. (1994) Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors. Electronics Letters, 30, 1085–7.Google Scholar
  187. 187.
    Fernando, G. F., Crosby, P. A. and Liu, T. (1999) The application of optical fiber sensors in advanced fiber reinforced composites. Parts, I-III. Optical Fiber Sensor Technology, 3, Eds: Grattan, K. T. V. and Meggitt, B. T., Kluwer Academic Publishers, London, 25129.Google Scholar
  188. 188.
    Lee, W., Lee, J., Henderson, C., Taylor, H. F., James, R., Lee, C. E., Swenson, V., Gibier, W. N., Atkins, R. A. and Gemeiner, W. G. (1997) Railroad bridge instrumentation with fiber optic sensors. Proceedings of the Optical Fiber Sensors Conference (OFS-12), Williamsburg, USA, 412–5.Google Scholar
  189. 189.
    Merzbacher, C. I., Kersey, A. D. and Friebele, E. J. (1999) Fiber optic sensors in concrete structures: a review. Optical Fiber Sensor Technology, 3, Eds: Grattan, K. T. V. and Meggitt, B. T., Kluwer Academic Publishers, London, 1–24.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • A. Othonos

There are no affiliations available

Personalised recommendations