Mathematical techniques in fiber optic sensor applications

  • K. T. V. Grattan
  • B. M. A. Rahman
Chapter
Part of the Optoelectronics, Imaging and Sensing Series book series (OISS, volume 3)

Abstract

There is a continuing need for high quality and repeatable measurement techniques for application in a wide variety of industries, and with that the requirement for reliable and trustworthy instrumentation. Fiber optics have a significant part to play in achieving this goal and could result in an opportunity for cost savings, which increases the competitive potential, with benefits being passed on to the customer. Further, the meeting of increased legislative requirements world-wide are often seen to be driving the field, especially in safety and environmental matters. The technology has developed rapidly in recent years, and is now being used by physicists, chemists, engineers and biologists, as well as those comparatively untrained in the fundamentals of the subject. With the wide variety of techniques (which include optical fiber systems) available to these investigators, it is essential that there is a clear understanding of the appropriate guidelines for the selection and use of any particular method of instrumentation, and its limitations as well as its desirable features. Also, the degree to which it is ‘user friendly’ can considerably influence its acceptability for any specific application.

Keywords

Optical Waveguide Back Propagation Neural Network Mathematical Technique Fiber Optic Sensor Multiple Quantum Well 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finkelstein, L. and Grattan, K. T. V. Concise Encyclopedia of Measurement and Instrumentation, Pergamon Press, Oxford, 1994.Google Scholar
  2. 2.
    James, J. R. and Gallett, I. N. L. Point-matched solutions for propagating modes on arbitrarily shaped dielectric rods, Radio Electron. Eng., 42, 103, 1972.CrossRefGoogle Scholar
  3. 3.
    Chiang, K. S. Analysis of optical fibers by effective-index method, Appl. Opt., 25, 348354, 1986.Google Scholar
  4. 4.
    Su, C. C. and Chen, C. H. Calculation of propagation constants and cutoff frequencies of radially inhomogeneous optical fibers, IEEE Trans. Microwave Theory Technol., MTT-34, 328–332, 1986.Google Scholar
  5. 5.
    Rahman, B. M. A. and Davies, J. B. Finite-element solution of integrated optical waveguides, J. Lightwave Technol., LT-2, 682–688, 1984.Google Scholar
  6. 6.
    Wang, D. N., Ning, Y. N., Grattan, K. T. V., Palmer, A. W. and Weir, K. Optimized multiwavelength combination sources for interferometric use, Appl. Opt., 33, 73267333, 1994.Google Scholar
  7. 7.
    Wang, D. N., Grattan, K. T. V. and Palmer, A. W. Dispersion effect analysis with multiwavelength combination sources in optical sensor applications, Opt. Commun., 127, 19–24, 1996.CrossRefGoogle Scholar
  8. 8.
    Grattan, K. T. V., Selli, R. K. and Palmer, A. W. Ruby decay-time fluorescence thermometer in a fibre optic configuration, Rev. Sci. Instrum., 59, 1328–1335, 1988.CrossRefGoogle Scholar
  9. 9.
    Zhang, Z., Grattan, K. T. V. and Palmer, A. W. A fibre optic high temperature sensor based on the fluorescence of alexandrite, Rev. Sci. Instrum., 63, 3869–3873, 1992.CrossRefGoogle Scholar
  10. 10.
    Zhang, Z., Grattan, K. T. V. and Palmer, A. W. Temperature dependencies of fluorescence lifetimes in Cr+3-doped insulating crystals, Phys. Rev. B., 48, 7772–7778, 1993.CrossRefGoogle Scholar
  11. 11.
    Goell, J. E. A circular harmonic computer analysis of rectangular dielectric wave-guides, Bell Syst. Tech. J., 48, 2133–2160, 1969.CrossRefGoogle Scholar
  12. 12.
    Marcatili, E. A. J. Dielectric rectangular waveguide and directional coupler for integrated optics, Bell Syst. Tech. J., 48, 2071–2102, 1969.CrossRefGoogle Scholar
  13. 13.
    Knox, R. M. and Toulios, P. P. Integrated circuits for the millimetre through optical frequency range, Proc. MRI Symp. Submilimeter Waves, Brooklyn Poly Inst., Brooklyn, pp. 497–516, 1970.Google Scholar
  14. 14.
    Sharma, E. K., Ghatak, A. K. and Goyal, I. C. Matrix method for determining propagation characteristics of optical waveguides IEEE J. Quantum Electron, QE-19, 1231–1233, 1983.Google Scholar
  15. 15.
    Stern, M. S., Kendall, P. C. and Mcllroy, P. W. A. Analysis of the spectral index method for vector mode of rib waveguides, Proc. IEE, J. Optoelectron., 137, 21–26, 1990.Google Scholar
  16. 16.
    Rogge, U. and Pregla, R. Method of lines for the analysis of strip-loaded optical waveguides, J. Opt. Soc. Am. B, 8, 459–463, 1991.CrossRefGoogle Scholar
  17. 17.
    Bierwirth, K. N., Schulz, M. and Arndt, F. Finite difference analysis of rectangular dielectric waveguide structures, IEEE Microwave Theory Technol., MTT-34, 11041114, 1986.Google Scholar
  18. 18.
    Dagli, N. and Fonstad, C. G. Analysis of rib dielectric waveguides, IEEE J. Quantum Electron., QE-21, 315–321, 1985.Google Scholar
  19. 19.
    Huang, W. P. Methods for Modelling and Simulations of Guided-Wave Optoelectronic Devices. Part I. Modes and Couplings. Part II. Waves and Interactions. EMW Publishing, Cambridge, MA, 1995.Google Scholar
  20. 20.
    Rahman, B. M. A., Fernandes, F. A. and Davies, J. B. Review of finite element methods for microwave and optical waveguides, Proc. IEEE, 79, 1442–1448, 1991.CrossRefGoogle Scholar
  21. 21.
    Silvester, P. P. and Ferrari, R. L. Finite Elements for Electrical Engineers, 2nd edn, Cambridge University Press, Cambridge, 1990.Google Scholar
  22. 22.
    Yeh, C., Ha, K., Dong, S. B. and Brown, W. P. Single-mode optical waveguides, Appl. Opt., 18, 1490–1504, 1979.CrossRefGoogle Scholar
  23. 23.
    Mabaya, M., Lagasse, P. E. and Vandenbulcke, P. Finite element analysis of optical waveguides, IEEE, MTT-29, 600–605, 1981.Google Scholar
  24. 24.
    Rahman, B. M. A. and Davies, J. B. Finite-element analysis of optical and microwave waveguide problems, IEEE Trans. Microwave Theory Technol., MTT-32, 20–28, 1984.Google Scholar
  25. 25.
    Koshiba, M., Hayata, K. and Suzuki, M. Improved finite-element formulation in terms of magnetic field vector for dielectric waveguides, IEEE Trans. Microwave Theory Technol., MTT-33, 227–233, 1985.Google Scholar
  26. 26.
    Koshiba, M., Hayata, K. and Suzuki, M. Approximate scalar finite-element analysis of anisotropie optical waveguides with off-diagonal elements in a permittivity tensor, IEEE Trans. Microwave Theory Technol., MTT-32, 587–593, 1984.Google Scholar
  27. 27.
    Davies, J. B., Fernandez, F. A. and Philippou, G. Y. Finite element analysis of all modes in cavities with circular symmetry, IEEE Trans. Microwave Theory Technol., MTT-30, 1975–1980, 1982.Google Scholar
  28. 28.
    Rahman, B. M. A. and Davies, J. B. Vector-H finite element solution of GaAs/GaA1As rib waveguides, Proc. IEE, J. Optoelectron., 132, 349–353, 1988.Google Scholar
  29. 29.
    Katrisku, F., Rahman, B. M. A. and Grattan, K. T. V. Finite element analysis of diffused anisotropic channel waveguides, J. Lightwave Technol., 14, 780–786, 1996.CrossRefGoogle Scholar
  30. 30.
    Austin, M. W. Theoretical and experimental investigation of GaAs/GaAlAs and n/n+ GaAs rib waveguides, J. Lightwave Technol., LT-2, 688–694, 1984.Google Scholar
  31. 31.
    Liu, Y., Rahman, B. M. A. and Grattan, K. T. V. Thermal stress induced birefringence in bow-tie fibers using finite element method, Appl. Opt., 33, 5611–5616, 1994.CrossRefGoogle Scholar
  32. 32.
    Liu, Y., Rahman, B. M. A. and Grattan, K. T. V. Analysis of birefringence properties of optical fibers made by a preform deformation technique, J. Lightwave Technol., LT-13, 142–147, 1995.Google Scholar
  33. 33.
    Rahman, B. M. A., Souza, J. R. and Davies, J. B. Numerical analysis of nonlinear bistable-optical waveguides, IEEE Photonics Technol. Lett., 2, 265–267, 1990.CrossRefGoogle Scholar
  34. 34.
    Ettinger, R. D., Fernandez, F. A., Davies, J. B. and Rahman, B. M. A. Finite element analysis of slab-loaded nonlinear waveguide with saturable media, IEEE Photonics Technol. Lett., 3, 147–149, 1991.Google Scholar
  35. 35.
    Rahman, B. M. A., Liu, Y. and Grattan, K. T. V. Finite element modelling of one-and two-dimensional MQW semiconductor optical waveguides, IEEE Photonics Technol. Lett., 5, 928–931, 1993.CrossRefGoogle Scholar
  36. 36.
    Fernandez, F. A. and Lu, Y. Variational finite element analysis of dielectric wave-guides with no spurious modes, Electron. Lett., 26, 2125–2126, 1990.CrossRefGoogle Scholar
  37. 37.
    Themistos, C., Rahman, B. M. A., Hadjicharalambous, A. and Grattan, K. T. V. Loss/ gain analysis of optical waveguides, IEEE J. Lightwave Technol., 13, 1760–1765, 1995.CrossRefGoogle Scholar
  38. 38.
    Feit, M. D. and Fleck, Jr. J. A. Light propagation in graded-index optical fibres, Appl. Opt., 17, 3990–3998, 1978.CrossRefGoogle Scholar
  39. 39.
    Yevick, D. and Hermansson, B. Efficient beam propagation techniques, QE-26, 109112, 1990.Google Scholar
  40. 40.
    Huang, W. P., Xu, C. L., Chu, S. T. and Chaudhuri, S. K. A finite difference vector beam propagation method: analysis and assessment, JLT-10, 295–305, 1992.Google Scholar
  41. 41.
    Buah, P. A., Rahman, B. M. A. and Grattan, K. T. V. Numerical simulation of pulse propagation in nonlinear tapered waveguide, Proc. SPIE, 2212, 66–72, April 1994.CrossRefGoogle Scholar
  42. 42.
    Hernadez-Figueroa, H. E. Nonlinear nonparaxial beam-propagation method, Electronic Lett., 30, 352–353, 1994.CrossRefGoogle Scholar
  43. 43.
    Buah, P. A., Rahman, B. M. A. and Grattan, K. T. V. A split-step finite element scheme for spatio-temporal analysis of pulse propagation in nonlinear waveguides, OSA Nonlinear Guided-Wave Phenomena, Vol. 15, pp. 208–211, Cambridge, MA, 1993.Google Scholar
  44. 44.
    Rahman, B. M. A. and Davies, J. B. Analysis of optical waveguide discontinuities, J. Lightwave Technol., LT-6, 52–57, 1988.Google Scholar
  45. 45.
    Rahman, B. M. A., Wongcharoen, T. and Grattan, K. T. V. Finite element analysis of nonsynchronous directional couplers, Fiber Integrated Opt., 13, 331, 1994.CrossRefGoogle Scholar
  46. 46.
    Wongcharoen, T., Rahman, B. M. A. and Grattan, K. T. V. Power coupling for electrooptic directional coupler switch, in Guided-Wave Optoelectronics (Ed. T. Tamir ), pp. 213–219, Plenum Press, New York, 1995.CrossRefGoogle Scholar
  47. 47.
    Wongcharoen, T., Rahman, B. M. A. and Grattan, K. T. V. Accurate characterization of optical filters with two-dimensional confinement, J. Lightwave Technol, November 1996.Google Scholar
  48. 48.
    Mustacich, R. V. Scalar finite element analysis of electro-optic modulation in diffused channel waveguides and poled waveguides in polymer thin films, Appl. Opt., 27, 3732, 1988.CrossRefGoogle Scholar
  49. 49.
    Young, T. P., Armstrong, G. A. and Smith, W. P. SPIE, 1141, 103, 1989.CrossRefGoogle Scholar
  50. 50.
    Rajarajan, M., Rahman, B. M. A. and Grattan, K. T. V. Accurate characterization of MMI devices with two-dimensional confinement, J. Lightwave Technol., September 1996.Google Scholar
  51. 51.
    Hayata, K. and Koshiba, M. Numerical study of guided-wave sum-frequency generation through second-order nonlinear parametric process, J. Opt. Soc. Am. B, 8, 449–458, 1991.CrossRefGoogle Scholar
  52. 52.
    Bava, G. P., Montrosset, I., Sohler, W. and Suche, H. Numerical modelling of Ti:LiNbO3 integrated optical parametric oscillators. QE-23, 42–51, 1987.Google Scholar
  53. 53.
    Wilt, D. P. and Yariv, A. A self-consistent static model of the double-heterostructure laser, IEEE J. Quantum Electron., QE-17, 1941, 1981.Google Scholar
  54. 54.
    Tan, G., Bewtra, N., Lee, K. and Xu, J. M. A two-dimensional nonisothermal finite clement simulation of laser diodes, IEEE J. Quantum Electron., QE-29, 822–835, 1993.Google Scholar
  55. 55.
    Rahman, B. M. A., Lepkowski, P. and Grattan, K. T. V. Thermal modelling of vertical cavity surface emitting lasers, Proc. IEE J. Optoelectron., 82–86, 1995.Google Scholar
  56. 56.
    Johnson, M. Neural network techniques in instrumentation, Meas. Control, 6, 248–253, 1996.Google Scholar
  57. 57.
    Benjathapanum, N., Boyle, W. J. O. and Grattan, K. T. V. Binary encoded 2nd differential spectrometry using UV-vis spectral data and neural networks in the estimation of species type and concentration, IEE Proc. Sci. Meas. Technol., 144, 73–80, 1997.CrossRefGoogle Scholar
  58. 58.
    Bhandare, P., Mendelson, Y., Peura, R. A., Janatsch, G., Kruse-Jares, J. D., Marbach, R. and Heise, H. M. Multivariate determination of glucose in whole blood using partial least squares and artificial neural networks using mid-infrared spectroscopy, Appl. Spectrosc., 47, 1214–1222, 1993.CrossRefGoogle Scholar
  59. 59.
    Ham, F. M., Cohen, G. M. and Cho, B. Neural network based real-time detection of glucose using a non-chemical optical sensor approach. Proc. 12th Annual Conf., IEEE Engineering in Medicine and Biology Society, Vol. 2, LRW Associates, Arnold, MD, Philadelphia, PA, pp. 480–482, 1990.Google Scholar
  60. 60.
    Liu, Y., Upadhyaya, B. R. and Naghedolfeizi, M. Chemometric data analysis using artificial neural networks, Appl. Spectrosc., 47, 12–23, 1993.CrossRefGoogle Scholar
  61. 61.
    Boger, Z. Application of neural networks to water and wastewater treatment plant operation, Instrum. Soc. Am., 31, 25–33, 1992.Google Scholar
  62. 62.
    Remelhart, D. E. and McClelland, J. L. in Forming internal representation by error propagation, Parallel Distributed Processing, Vol. I. Foundation, Chap. 8, MIT Press, Boston, MA, 1992.Google Scholar
  63. 63.
    Sommer, L. Analytical Absorption Spectrophotometry in the Visible and Ultraviolet: The Principles, Elsevier, Amsterdam, 1996.Google Scholar
  64. 64.
    Ares, R. E., Lidiard, D. P. and Spragg, R. A. Principle component analysis, Chem. Br., 821–824, 1991.Google Scholar
  65. 65.
    Patrick, H., Williams, G. M., Kersey, A. D., Pedrazzani, J. R. and Vengsarkar, A. M. Strain/temperature discrimination using combined fiber Bragg and long-period grating sensors, OFS 11th Int. Conf. Optical Sensors. Advanced Sensing Photonics, pp. 96–99, May 1996.Google Scholar
  66. 66.
    Brignell, J. E. Measurement and control feature on intelligent instruments, Meas. Control, 29, 164, 1996.Google Scholar
  67. 67.
    Tanner, A. H. and White, N. M. Virtual instrumentation: a solution to the problem of design complexity in intelligent instruments, Meas. Control, 29, 165–171, 1996.Google Scholar
  68. 68.
    Grattan, K. T. V., Saini, D. P. S. and Palmer, A. W. Optical vibrating quartz crystal pressure sensor using frustrated-total-internal-reflection readout techniques, J. Light-wave Technol., LT5, 972–979, 1987.Google Scholar
  69. 69.
    Pinnock, R. A. Micromachined silicon resonant sensors with robust optical interrogation, Paper presented at Sensors and their Applications VI, Manchester, 1993. Published in Sensors VI: Technology Systems and Applications, Institute of Physics Publishing, Bristol (Eds K. T. V. Grattan and A. T. Augousti), pp. 141146, 1993.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • K. T. V. Grattan
  • B. M. A. Rahman

There are no affiliations available

Personalised recommendations