Switchings and Perfect Codes

  • Faina I. Solov’eva
Chapter

Abstract

Let C be a code (or a design or a graph) with some parameters. Let A be a subset of C. If the set C′ = (C \ A) ∪ B is a code (a design or a graph) with the same parameters as C we say that C′ is obtained from C by a switching. Special switchings for perfect binary codes are considered. A survey of all nontrivial properties of perfect codes given by the switching approach is presented. Some open questions are discussed.

Keywords

Minimal Cardinality Disjunctive Normal Form Perfect Code Galois Field Perfect Binary Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.K. Abdurahmanov, On geometrical structure of codes correcting errors, PhD Thesis, Tashkent, Usbekiston (1991), 66 p.Google Scholar
  2. [2]
    R. Ahlswede, H. Aydinian and L. Khachatrian, “On perfect codes and related concepts”, Designs, Codes, and Cryptography,to appear.Google Scholar
  3. [3]
    S.V. Avgustinovich, “On nonisometry of perfect binary codes”, Proc. of Institute of Math. SB RAN 27, 1994, 3–5.MathSciNetGoogle Scholar
  4. [4]
    S.V. Avgustinovich, “On a property of perfect binary codes”, Discrete Analysis and Operation Research 2 (1), 1995, 4–6.MathSciNetGoogle Scholar
  5. [5]
    S.V. Avgustinovich and F.I. Solov’eva, “On projections of perfect binary codes”, Proc. Seventh Joint Swedish-Russian Workshop on Information Theory, St.-Petersburg, Russia, June 1995, 25–26.Google Scholar
  6. [6]
    S.V. Avgustinovich and F.I. Solov’eva, “Construction of perfect binary codes by sequential translations of the i-components”, Proc. of Fifth Int. Workshop on Algebraic and Comb. Coding Theory. Sozopol, Bulgaria, June 1996, 9–14.Google Scholar
  7. [7]
    S.V. Avgustinovich and F.I. Solov’eva, “Existence of nonsystematic perfect binary codes”, Proc. of Fifth Int. Workshop on Algebraic and Comb. Coding Theory, Sozopol, Bulgaria, June 1996, 15–19.Google Scholar
  8. [8]
    S.V. Avgustinovich and F.I. Solov’eva, “On the nonsystematic perfect binary codes”, Probl. Inform. Transmission 32 (3), 1996, 258–261.MathSciNetMATHGoogle Scholar
  9. [9]
    S.V. Avgustinovich and F.I. Solov’eva, “Construction of perfect binary codes by sequential translations of an a-components”, Probl. Inform. Transmission 33 (3), 1997, 202–207.MathSciNetMATHGoogle Scholar
  10. [10]
    S.V. Avgustinovich and F.I. Solov’eva, “On distance regularity of perfect binary codes”, Probl. Inform. Transmission 34 (3), 1998, 247–249.MathSciNetMATHGoogle Scholar
  11. [11]
    S.V. Avgustinovich and F.I. Solov’eva, “Perfect binary codes with trivial automorphism group”, Proc. of Int. Workshop on Information Theory, Killarney, Ireland. June 1998, 114–115.Google Scholar
  12. [12]
    S.V. Avgustinovich, “To minimal distance graph structure of perfect binary (n, 3)-codes”, Discrete Analysis and Operation Research 1 (5), 1998, 3–5Google Scholar
  13. [13]
    H. Bauer, B. Ganter, and F. Hergert, “Algebraic techniques for nonlinear codes”, Combinatorica 3, 1983, 21–33.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    P. Delsarte, “Bounds for unrestricted codes by linear programming”, Philips Res. Report 27, 1972, 272–289.MathSciNetMATHGoogle Scholar
  15. [15]
    T. Etzion and A. Vardy, “Perfect binary codes: Constructions, properties and enumeration”, IEEE Trans. Inform. Theory 40 (3), 1994, 754–763.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    T. Etzion and A. Vardy, “On perfect codes and things: problems and solutions”, SIAM J. Discrete Math. 11 (2), 1998, 205–223.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    O. Heden, “A binary perfect code of length 15 and codimension 0”, Designs, Codes and Cryptography 4, 1994, 213–220.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    W. Heise and P. Quattrocchi, Informations-and Codierungtheorie, 3. Aufl., Springer-Verlag, 1995.CrossRefGoogle Scholar
  19. [19]
    F. Hergert, “Algebraische Methoden fur Nichtlineare Codes”, Thesis Darmstadt, 1985.Google Scholar
  20. [20]
    S.P. Lloyd, “Binary block coding”, Bell Syst. TechrL. J. 36, 1957, 517–535.MathSciNetGoogle Scholar
  21. [21]
    G. Cohen, I. Honkala, A. Lobstein and S. Litsyn, Covering codes, Chapter 11, Elsevier, 1998.Google Scholar
  22. [22]
    S.A. Malyugin, “Perfect codes with trivial automorphism group”, Proc. II Int. Workshop on Optimal Codes, Sozopol, Bulgaria, June 1998, 163–167.Google Scholar
  23. [23]
    S.A. Malyugin, “On counting of perfect binary codes of length 15”, Discrete Analysis and Operation Research,submitted (in Russian).Google Scholar
  24. [24]
    M. Mollard, “A generalized parity function and its use in the construction of perfect codes”, SIAM J. Alg. Disc. Meth. 7 (1), 1986, 113–115.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    K.T. Phelps, “Every finite group is the automorphism group of some perfect code”, J. of Combin. Theory Ser. A 43 (1), 1986, 45–51.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    K.T. Phelps and 1VI.J. LeVan, “Kernels of nonlinear Hamming codes”, Designs, Codes and Cryptography 6, 1995, 247–257.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    K.T. Phelps and M.J. LeVan, “Non-systematic perfect codes”, SIAM Journal of Discrete Mathematics 12 (1), 1999, 27–34.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    K.T. Phelps and M.J. LeVan, “Switching equivalence classes of perfect codes”, Designs, Codes and Cryptography 16 (2), 1999, 179–184.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    A.K. Pulatov, “On geometric properties and circuit realization of subgroup in En, Discrete Analysis 23, 1973, 32–37.MathSciNetMATHGoogle Scholar
  30. [30]
    A.K. Pulatov, “On structure of close-packed (n,3)-codes”, Discrete Analysis 29, 1976, 53–60.MathSciNetMATHGoogle Scholar
  31. [31]
    G.S. Shapiro and D.L. Slotnik, “On the mathematical theory of error correcting codes”, IBM J. Res. and Devel. 3 (1), 1959, 25–34.CrossRefGoogle Scholar
  32. [32]
    F.I. Solov’eva, “Factorization of code-generating disjunctive normal forms”, Methody Discretnogo Analiza 47, 1988, 66–88.MathSciNetMATHGoogle Scholar
  33. [33]
    F.I. Solov’eva, “Exact bounds on the connectivity of code-generating disjunctive normal forms”, Inst. Math. of the Siberian Branch of Acad. of Sciences USSR, Preprint 10, 1990, 15 (in Russian).Google Scholar
  34. [34]
    F.I. Solov’eva, “A combinatorial construction of perfect binary codes”, Proc. of Fourth Int. Workshop on Algebraic and Comb. Coding Theory, Novgorod, Russia, September 1994, 171–174.Google Scholar
  35. [35]
    F.I. Solov’eva, S.V. Avgustinovich, T. Honold T. and W. Heise, “On the extendability of code isometries”, J. of Geometry, 61, 1998, 3–16.MathSciNetMATHGoogle Scholar
  36. [36]
    F.I. Solov’eva, “Perfect binary codes: bounds and properties”, Discrete Mathematics,to appear.Google Scholar
  37. [37]
    F.I. Solov’eva, “Perfect binary codes components”, Proc. of Int. Workshop on Coding and Cryptography, Paris, France. January, 1999, 29–32.Google Scholar
  38. [38]
    F.I. Solov’eva, “Structure of i-components of perfect binary codes”, Discrete Appl. of Math.,submitted.Google Scholar
  39. [39]
    A. Tietäväinen, “On the nonexistence of perfect codes over finite fields”, SIAM J. Appl. Math. 24, 1973, 88–96.MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    Y.L. Vasil’ev, “On nongroup close-packed codes”, Problems of Cybernetics 8, 1962, 375–378Google Scholar
  41. [41]
    Y.L. Vasil’ev, “On comparing of complexity of deadlock and minimal disjunctive normal forms”, Problems of Cybernetics 10, 1963, 5–61.Google Scholar
  42. [42]
    Y.L. Vasil’ev and F.I. Solov’eva, “Codegenerating factorization on n-dimensional unite cube and perfect codes”, Probl. Inform. Transmission 33 (1), 1997, 64–74.MathSciNetGoogle Scholar
  43. [43]
    A.Y. Vasil’eva, “Spectral properties of perfect binary (n,3)-codes”, Discrete Analysis and Operation Research 2 (2), 1995, 16–25.MathSciNetMATHGoogle Scholar
  44. [44]
    A. Y. Vasil’eva, “On distance between perfect binary codes”, Discrete Analysis and Operation Research 1 (5), 1998, 25–29.Google Scholar
  45. [45]
    A.Y. Vasil’eva, “On centered characteristic functions of perfect binary codes”, Proc. of Sixth Int. Workshop on Algebraic and Combin. Coding Theory, Pskov, Russia, September 1998, 224–227.Google Scholar
  46. [46]
    A.Y. Vasil’eva, “Local spectrum of perfect binary codes”, Discrete Analysis and Operation Research 1 (6), 1999, 3–11 (in Russian).Google Scholar
  47. [47]
    V.A. Zinov’ev and V.K. Leontiev, “A theorem on nonexistence of perfect codes over Galois fields”, Inst. of Problems Information Transmission, Preprint, 1972 (in Russian).Google Scholar
  48. [48]
    V.A. Zinov’ev and V.K. Leontiev, “On perfect codes”, Probl. Control and Inform. Theory 1, 1972, 26–35.Google Scholar
  49. [49]
    V.A. Zinov’ev and V.K. Leontiev, “Nonexistence of perfect codes over Galois fields”, Probl. Control and Inform. Theory 2 (2), 1973, 123–132.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Faina I. Solov’eva
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations