Scalar and Vector Generalized Convexity

  • E. Castagnoli
  • P. Mazzoleni
Part of the Ettore Majorana International Science Series book series (EMISS, volume 43)


The interest in the properties of convexity and concavity can be found in some very general economic principles such as the law of decreasing increments, the diversification of preferences and production processes and the theory of rational behaviour towards risk.


Vector Function Weakly Convex Concavity Property Generalize Convex Function Generalize Concavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Avriel.“ Nonlinear Programming: analysis and methods”, Prentice Hall, Englewood Cliffs (1976).Google Scholar
  2. [2]
    A. Avriel, I. Zang. “Generalized arcwise-connected functions and characterization by local-global minimum properties”. Jou. Optimization Th. Appl., 32 (1980).Google Scholar
  3. [3]
    E.F. Beckenbach. “Generalized convex functions”. Bull. Amer. Math. Soc., 43 (1937), pp. 363–37.MathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Ben-Tal.“ On generalized means and generalized convex functions”. Jou. Optimization Th. Appl, 21 (1977), pp. 1–13.CrossRefzbMATHGoogle Scholar
  5. [5]
    E. Castagnoli, P. Mazzoleni. “Connessione generalizzata per famiglie di archi”. Rend. Corn. Studi e Progr. Econ., Univ. of Venice, Ca’ Foscari, 23 (1985), pp. 35–60.Google Scholar
  6. [6]
    E. Castagnoli, P. Mazzoleni. “Towards a unified type of concavity”. Jou of Information Sciences. To appear on 1989.Google Scholar
  7. [7]
    E. Castagnoli, P. Mazzoleni. “Generalized convexity for functions and multifunctions and optimality conditions”. Research Paper n. 134, Dept. Math. (Optimization ), Univ. of Pisa, (1986).Google Scholar
  8. [8]
    E. Castagnoli, P. Mazzoleni. “Convessitâ. debole per l’ottimizzazione vettoriale”. Rend. Corn. Studi e Progr. Econ., Univ. of Venice, Ca’ Foscari, 24 (1986), pp. 88–110.Google Scholar
  9. [9]
    E. Castagnoli, P. Mazzoleni. “Generalized connectedness for families of arcs”. Optimization, Akademie-Verlag, 18 (1987).Google Scholar
  10. [10]
    E. Castagnoli, P. Mazzoleni. “About derivatives of some generalized concave functions”. Jou. of Information and Optimization Sciences. To appear on 1989.Google Scholar
  11. [11]
    B.D. Craven. “Vector-valued optimization”. In [34], (1981), pp. 661–687.Google Scholar
  12. [12]
    B. De Finetti. “Sul concetto di media”. Giornate Istituto Italiano Attuari, Roma, n. 3 (1931), pp. 3–30.Google Scholar
  13. [13]
    B. De Finetti. “Sulle stratificazioni convesse”. Rend. Mat. Pura Appl., 30 (1949), pp. 173–183.CrossRefGoogle Scholar
  14. [14]
    G.H. Hardy, J.E. Littlewood, G. Polya. “Inequalities”. Cambridge University Press, Cambridge (1934).Google Scholar
  15. [15]
    R. Hartley. “On cone-efficiency, cone-convexity and cone-compactness”. SIAM J. Appl. Math., 34 n. 2 (1978), pp. 211–222.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    H. Hartwig. “On generalized convex functions”. Optimization, Akademie-Verlag, 14 (1983).Google Scholar
  17. [17]
    H. Hartwig. “Generalized convexities of lower semicontinuous functions”. Optimization, Akademie-Verlag, 16 (1985).Google Scholar
  18. [18]
    G.B. Hazen, T.L. Morin. “Optimality conditions in nonconical multiple objective programming”. Jou. Optimization Th. Appl, 40 n. 1 (1983), pp. 25–60.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    G. Hölder. “Uber einen Mittelwerstratz”. Nach. Ges. Wiss. Gottingen (1889), pp. 38–47.Google Scholar
  20. [20]
    G. Jameson. “Order linear spaces”. Springer-Verlag, New York (1970).Google Scholar
  21. [21]
    J.L.W.V. Jensen. “Sur les fonctions convexes et les inegalités entre les valeurs moyennes”. Acta Math., 30 (1906), pp. 175–193.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H.W. Kuhn, A.W. Tucker.“Nonlinear programming”. Proceed. of the Second Berkeley Symposium om Mathematical Statistics and Probability, ed. by J. Neyman, Univ. of California Press. (1951), pp. 481–492.Google Scholar
  23. [23]
    A.W. Marshall, I. Olkin. “Inequalities: Theory of majorization and its applications”. Academic Press, New York (1979).zbMATHGoogle Scholar
  24. [24]
    D.H. Martin. “Connected level sets, minimizing sets and uniqueness in optimization”. Jou. Optimization Th. Appl, 36 (1982).Google Scholar
  25. [25]
    J.E. Martinez-Legaz.“On lower subdifferentiable functions”. In K.H.Hoffmann, J.B. Hiriart-Urruty, C. Lemaréchal, J.Zowe (eds.), “Trends in Mathematical Optimization”, Birkäuser-Verlag, Basel (1988), pp. 198–232.Google Scholar
  26. [26]
    J.E. Martinez-Legaz. “Lexicographical order and duality in multiobjective programming”. European Jou. Operat. Res., 33, n. 3 (1988).Google Scholar
  27. [27]
    P. Mazzoleni. “Duality and reciprocity for vector programming”. European Jou. Operat. Res., 10 (1982).Google Scholar
  28. [28]
    P. Mazzoleni. “Elementi di teoria della convessitâ per le applicazioni”. Research Paper, Institute of Mathem.,Univ. of Verona (1988).Google Scholar
  29. [29]
    H. Minkowski. “Theorie der Konvexen Korper Insbesondere Begründung ibres Oberflächenbegriffs”.Gesammelte Abhandhungen II, Leipzig (1911).Google Scholar
  30. [30]
    B. Mond. “Generalized convexity in mathematical programming”. Bull. Austral. Math. Soc.,27 (1983), pp. 185–202.Google Scholar
  31. [31]
    W. Oettly. “Optimality conditions for programming problems involving multi-valued mappings”. In B. Korte (ed.) “Modern Applied Mathematics”, North-Holland, Amsterdam (1982), pp. 195–226.Google Scholar
  32. [32]
    A. Prekopa. “Logarithmic concave measures with applications to stochastic programming”. Acta Sci. Mat., 32 (1971), pp. 301–316.MathSciNetzbMATHGoogle Scholar
  33. [33]
    A.W. Roberts, D.E. Varberg. “Convex functions”. Academic Press, New York (1973).zbMATHGoogle Scholar
  34. [34]
    S. Schaible, W.T. Ziemba (eds.). “Generalized concavity in optimization and economics”. Academic Press, New York (1981).zbMATHGoogle Scholar
  35. [35]
    I. Schur. “Uber eine Klasse von Mittelbedingrungen mit Anwendungen die Determinanten”. In A. Braner, H. Rohrbach (eds.): Issai Schur Collected Works, II, Springer-Verlag, Berlin (1923), pp. 416–427.Google Scholar
  36. [36]
    A.K. Sen. “Collective choice and social welfare”. Holden-Day, S. Francisco (1970).zbMATHGoogle Scholar
  37. [37]
    C. Singh. “Elementary properties of arcwise connected sets and functions”. Jou. Optimization Th. Appl, 41 (1983).Google Scholar
  38. [38]
    L. Tornheim. “On n-parameter families of functions and associated convex functions”. Trans. Amer. Math. Soc., 29 (1950), pp. 457–467.MathSciNetGoogle Scholar
  39. [39]
    A.R. Warburton. “Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto optimal alternative”, Jou. Optimization Th. Appl, 40, n. 4 (1983), pp. 537–557.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    P.L. Vu. “Cone convexity, cone extreme points and nondominated solution in decision problems with multiobjectives”. Jou. Optimization Th. Appl, 14 (1974), pp. 319–377.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • E. Castagnoli
    • 1
  • P. Mazzoleni
    • 2
  1. 1.University “L.Bocconi”MilanoItaly
  2. 2.Mathematical Institute, Univ. of VeronaVeronaItaly

Personalised recommendations