MALDI-MS for Food Analysis

  • Peter Sporns
  • Darcy C. Abell
Chapter

Abstract

A new molecular ionization technique known as matrix-assisted laser desorption/ionization (MALDI) was first reported by two groups in 1988 1.2. This ionization technique is most often coupled with the simplest form of mass spectrometry (MS), time-of-flight (TOF). The advantages of this ionization technique were quickly recognized and commercially available MALDI-MS instruments started to appear in 1991. Now, after significant improvements in instrumentation MALDI-MS has become a common analytical technique. While MALDI-MS is still relatively unknown by food scientists, it offers significant advantages over other analytical methods for food analysis.

Keywords

Drift Tube Residue Analysis Picolinic Acid Thin Layer Chromatogram Kratos Analytical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida and T. Yoshida. 1988. Protein and polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2: 151.CrossRefGoogle Scholar
  2. 2.
    M. Karas and F. Hillenkamp. 1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 60: 2299.CrossRefGoogle Scholar
  3. 3.
    J.A. Carrol and R.C. Beavis. 1997. Matrix-assisted Laser Desorption and Ionization, Chapter 7 in: “Experimental Methods in Physical Sciences” J.C. Miller and R.F. Haglund, Jr., eds. - available on the internet: http//128.122.10.3/MALDI/ChemPhysMan.htmGoogle Scholar
  4. 4.
    D.C. Shriemer and L. Li. 1996. Detection of high molecular weight narrow polydispersed polymers up to 1.5 million Daltons by MALDI mass spectrometry. Anal. Chem. 68: 2721.CrossRefGoogle Scholar
  5. 5.
    T. Souki, J.A. Marto, F.M. White, S. Guan and A.G. Marshall. 1995. Attomole biomolecule mass analysis by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance. Anal. Chem. 67: 4139.CrossRefGoogle Scholar
  6. 6.
    M.W. Duncan, G. Matanovic and A. Cerpa-Poljak. 1993. Quantitative analysis of low molecular weight compounds of biological interest by matrix-assisted laser desorption ionization. Rapid Commun. Mass Spectrom. 7: 1090.CrossRefGoogle Scholar
  7. 7.
    W.R. Wilkinson, A.I. Gusev, A. Proctor, M Houalla, D.M. Hercules. 1997. Selection of internal standards for quantitative analysis by matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry. Fresenius J. Anal. Chem. 357: 241.CrossRefGoogle Scholar
  8. 8.
    R. Kaufmann, B. Spengler and F. Lützenkirchen. 1993. Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. Rapid Commun. Mass Spectrom. 7: 902.CrossRefGoogle Scholar
  9. 9.
    M.J. Vestal, P. Juasz and S.A. Martin. 1995 Delayed extraction matrix-assisted laser desorption time-offlight mass spectrometry. Rapid Commun. Mass Spectrom. 9: 1044.CrossRefGoogle Scholar
  10. 10.
    R.S. Brown and J.J. Lennon. 1995. Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal. Chem. 67: 1998.Google Scholar
  11. 11.
    O.N. Jensen, A. Podtelejnkov and M. Mann. 1996. Delayed extraction improves specificity in database searches by matrix-assisted laser desorption/ionization peptide maps. Rapid Commun. Mass Spectrom. 10: 1371.CrossRefGoogle Scholar
  12. 12.
    D.R. Hickman, P. Roepstorff, P.R. Shewry and A.S. Tatham. 1995. Molecular weights of high molecular weight subunits of glutenin determined by mass spectrometry. J. Cereal Sci. 22: 99.CrossRefGoogle Scholar
  13. 13.
    E. Méndez, E. Camafeita, J.S. Sebastieân, 1. Valle, J. Solis, F.J. Mayer-Posner, D. Suckau, C. Marfisi and F. Soriano. 1995. Direct identification of wheat gliadins and related cereal prolamins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spect. 199 Suppl.: S123.Google Scholar
  14. 14.
    S. Catinella, P. Traldi, C. Pinelli, E. Dallaturca and R. Marsilio. 1996. Matrix-assisted laser desorption/ionization mass spectrometry in milk science. Rapid Commun. Mass Spectrom. 10: 1629.CrossRefGoogle Scholar
  15. 15.
    T. Krishnamurthy and P.L. Ross. 1996. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun. Mass Spectrom. 10: 1992.CrossRefGoogle Scholar
  16. 16.
    M.A. Claydon, S.N. Davey, V. Edwards-Jones and D.B. Gordon. 1996. The rapid identification of intact microorganisms using mass spectrometry. Nature Biotech’’, November: 1584.Google Scholar
  17. 17.
    A.M. Gouldsworthy, J. Leaver and J.M. Banks. 1996. Application of a mass spectrometry sequencing technique for identifying peptides present in cheddar cheese. Int. Dairy J. 6: 781.CrossRefGoogle Scholar
  18. 18.
    T.M. Billeci and J.T. Stults. 1993. Tryptic mapping of recombinant proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 65: 1709.CrossRefGoogle Scholar
  19. 19.
    J.S. Cottrel, M. Koerner and R. Gerhards. 1995. Characterization of synthetic polymers by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrum. 9: 1562.CrossRefGoogle Scholar
  20. 20.
    M.D. Mohr, K.O. Bömsen and M Widmer. 1995. Matrix-assisted laser desorption/ionization mass spectrometry: improved matrix for oligosaccharides. Rapid Commun. Mass Spectrom. 9: 809.CrossRefGoogle Scholar
  21. 21.
    P. Chen, A.G. Baker and M.V. Novotey. 1997. The use of osazones as matrices for the matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Anal. Biochern. 244: 144.CrossRefGoogle Scholar
  22. 22.
    J.J. Pitt and J.J. Gorman. 1997. Oligosaccharide characterization and quantitation using 1-phenyl-3-methyl5-pyrazolone derivatization and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 248: 63.CrossRefGoogle Scholar
  23. 23.
    M.C. Fitzgerald and L.M. Smith. 1995. Mass spectrometry of nucleic acids: the promise of matrix-assisted laser desorption-ionization (MALDI) mass spectrometry. Annu. Rev. Biophvs. Biomol. Struct. 24: 117.CrossRefGoogle Scholar
  24. 24.
    S.G. Penn, M.T. Cancilla, M.K. Green and C.B. Lerilla. 1997. Direct comparison of matrix assisted laser desorption/ionization and electrospray ionization in the analysis of gangliosides by Fourier transform mass spectrometry.European Mass Spectr. 3: 67.CrossRefGoogle Scholar
  25. 25.
    S. Gerdt, G. Lochnit, R.D. Dennis and R. Geyer. 1997. Isolation and structural analysis of three neutral glycosphingolipids from a mixed population of caenorhabditi.s elegans. Glvcobiol. 7: 265.Google Scholar
  26. 26.
    E. Pittenauer, E.R. Schmid, G. Allmainer, L. Puchinger and E. Kienzl. 1996. Sample preparation for the analysis of glycerophospholipids by matrix-assisted positive and negative ion Cf 252 plasma desorption time of flight mass spectrometry. European Mass Spectr. 2: 247.CrossRefGoogle Scholar
  27. 27.
    D.J. Harvey. 1995. Matrix-assisted laser desorption/ionization mass spectrometry ofphospholipids. J. Mass Speck: 30: 1333.CrossRefGoogle Scholar
  28. 28.
    M. Onishi-Kameyama, A. Yanagida, T. Kanada and T. Nagata. 1997. Identification of catechin oligomers from apple (Malus pumila cv. Fuji) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and fast-atom bombardment mass spectrometry. Rapid Commun. Mass Speck: 11: 31.CrossRefGoogle Scholar
  29. 29.
    R. Lidgard and M.W. Duncan. 1995. Utility of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the analysis of low molecular weight compounds. Rapid Commun. Mass Specb: 9: 128.CrossRefGoogle Scholar
  30. 30.
    I.L. Koumenis, M.L. Vestal, A.L. Yergey, S. Abrams, S.N. Deming and T.W. Hutchens. 1995. Quantitation of metal isotope ratios by laser desorption time-of-flight mass spectrometry. Anal. Cheer. 40: 2533.Google Scholar
  31. 31.
    D.C. Abell and P. Sporns. 1996. Rapid quantitation of potato glycoalkaloids by matrix-assisted laser desoption/ionization time-of-flight mass spectrometry. J. Agric. Food Chem. 44: 2292.CrossRefGoogle Scholar
  32. 32.
    T. Wingerath, W. Stahl, D. Kirsch, R. Kaufmann and H. Sies. 1996. Fruit juice carotenol fatty acid ester and carotenoids as identified by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. J. Agric. Food Cheer. 44: 2006.Google Scholar
  33. 33.
    B.L. Ackermann, B.T. Regg, L. Colombo, S. Stella and J.E. Coutant. 1996. Rapid analysis of antibiotic-containing mixtures from frementation broths by using liquid chromatography - electrospray ionization - mass spectrometry and matrix-assisted laser desorption ionization - time-of-flight - mass spectrometry. J. Amer Soc Mass Spect. 7: 1227.CrossRefGoogle Scholar
  34. 34.
    D.C. Muddiman, A.I. Gusev, K. Stoppek-Langer, A. Proctor, D.M. Hercules, P. Tat, R. Venkatararmanan and W. Diven. 1995. Simultaneous quantification of cyclosporin A and its major metabolites by time-offlight secondary-ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry utilizing data analysis techniques: comparison with high-performance liquid chromatrography. J. Mass Spec. 30: 1469.CrossRefGoogle Scholar
  35. 35.
    T. Wingerath, W. Stahl, D. Kirsch, R. Kaufmann and H. Sies. 1996. Fruit juice carotenol fatty acid ester and carotenoids as identified by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. J..4gric. Food Chem. 44: 2006.Google Scholar
  36. 36.
    D. Rideout, A. Bustamante and G. Siuzdak. 1993. Cationic drug analysis using matrix-assisted laser desorption/ionization mass spectrometry: application to influx kinetics, multidrug resistance and intracellular chemical change. Proc. Natl. Acad. Sci. USA. 90: 10226.CrossRefGoogle Scholar
  37. 37.
    A.H. Brockman and R. Orlando. 1995. Probe-immobilized affinity chromatography/mass spectrometry. Anal. Cheer. 67: 4581.CrossRefGoogle Scholar
  38. 38.
    R.P. Pauly, F. Rosche, M. Wermann, C.H.S. Mcintosh, R.A. Pederson and H.U. Demuth. 1996. Investigation of glucose-dependent insulinotropic polypeptide-(1–42) and glucagon-like peptide-1-(7–36) degradation in Vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. J Biol. Chem. 271: 23222.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Peter Sporns
    • 1
  • Darcy C. Abell
    • 1
  1. 1.Department of Agricultural, Food, and Nutritional ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations