Sticking in Muon-Catalyzed D-T Fusion

  • C. Petitjean
Part of the Ettore Majorana International Science Series book series (EMISS, volume 33)

Abstract

The issue of µα sticking after muon catalyzed DT fusion is controversial, since a number of theoretical and experimental results came out recently with sticking values ω s varying over a large range. After a review of this situation, our measurements at SIN and methods of sticking analysis from neutron time structures are presented in detail. The important point is the correct understanding of the experimentally observed time distributions. At high density (liquid DT) we find, after correction for other fusion channels, for DT sticking ω s = (0.45 ± 0.05)%, not dependent on tritium concentration c t and in accordance with our X-ray observations. At low density (DT gas, ø = 3%–8%) our preliminary result is 0.50 ± 0.10%, giving a ratio 1.1 ± 0.2 in agreement with conventional theories, but strongly disagreeing with the LAMPF experiment of S.E. Jones et al. Our result sets the maximum fusion output per muon to less than 220 ± 20. Our newest (1987) data confirm this result.

Keywords

Time Spectrum Cycle Rate Muon Decay Fusion Neutron Fusion Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.M. Bystritsky et al., Phys. Lett. 94B, 476 (1980) and JETP 5, 877 (1981).Google Scholar
  2. 2.
    S.E. Jones et al., Phys. Rev. Lett. 51, 1757 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    W.H. Breunlich et al., Phys. Rev. Lett. 53, 1137 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    S.E. Jones, “Some surprises in muon-catalyzed fusion”, presented at the Ninth Int. Conference on Atomic Physics, Seattle, Washington, USA, 23–27 July 1984.Google Scholar
  5. 5.
    S.E. Jones et al., Phys. Rev. Lett. 56, 588 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    S.E. Jones, “Muon-induced fusion: experiments at LAMPF”, proc. Los Alamos Workshop on Fundamental Muon Physics, Jan. 20–22, 1986, LA-10714-C, p.157 and Muon Cat. Fusion 1, 21 (1987), A.J. Caffrey et al., Muon Cat. Fusion 1, 53 (1987).Google Scholar
  7. 7.
    W.H. Breunlich et al., LBL reports 21–174 (1986), 21366 (1986), Phys. Rev. Lett. 58, 329 (1987) and Muon Cat. Fusion 1, 67 (1987), C. Petitjean et al., Muon Cat. Fusion 1, 89 (1987).ADSGoogle Scholar
  8. 8.
    C. Petitjean et al., SIN preprint PR-87–07 (1987), to be published in Muon Cat. Fuson 2 (1988).Google Scholar
  9. 9.
    S.S. Gerstein, L.I. Ponomarev, Phys. Lett. 72E, 80 (1977).Google Scholar
  10. 10.
    S.I. Vinitskii et al., JETP 47, 444 (1978).Google Scholar
  11. 11.
    L.I. Ponomarev, Atomkernenergie a 175 (1983), L.I. Ponomarev and G. Fiorentini, Muon Cat. Fusion 1, 3 (1987).Google Scholar
  12. 12.
    V.M. Bystritskii et al., JETP 49, 232 (1979).Google Scholar
  13. 13.
    P. Kammel et al., Phys. Lett. 112B, 319 (1982) and Phys. Rev. A28, 2611 (1983).Google Scholar
  14. 14.
    J. Zmeskal et al., Atomkernenergie 43, 193 (1983) and Muon Cat. Fusion 1, 109 (1987).Google Scholar
  15. 15.
    Yu.V. Petrov, Nature 285, 466 (1980) and Muon Cat. Fusion 1, 351 (1987).Google Scholar
  16. 16.
    S.S. Gershtein et al., JETP 51, 1053 (1980).ADSGoogle Scholar
  17. 17.
    J.D. Jackson, Phys. Rev. 106, 330 (1957).ADSCrossRefGoogle Scholar
  18. 18.
    S.K. Kauffmann et al., UCT-TP 16, (1984) (unpublished).Google Scholar
  19. 19.
    D. Ceperly and B.J. Alder, Phys. Rev. A31, 1999 (1985).Google Scholar
  20. 20.
    L.N. Bogdanova et al., Nucl. Phys. A454, 653 (1986), V. E. Markushin, Muon Cat. Fusion 1, 297 (1987).Google Scholar
  21. 21.
    L.I. Menshikov and L.I. Ponomarev, Sou. Phys. JETP Lett. 41, 623 (1985).ADSGoogle Scholar
  22. 22.
    H. Takahashi, BNL Preprint BNL 37714 (1986), Fusion Technology 9, 328 (1986), Phys. Lett B174, 133 (1986) and Muon Catalyzed Fusion 1, 375 (1987).Google Scholar
  23. 23.
    J.S. Cohen, M. Leon, Phys. Rev. A33, 1437 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    L.N. Bogdanova et al., Sou. Phys. JETP ß, 931 (1982).Google Scholar
  25. 25.
    S.S. Gerstein et al., Sou. Phys. JETP, 872 (1981).Google Scholar
  26. 26.
    L. Bracci and G. Fiorentini, Nucl. Phys. A364, 383 (1981).CrossRefGoogle Scholar
  27. 27.
    Chi-Yu Hu, UCRL preprint 94504, Livermore, April 1986.Google Scholar
  28. 28.
    J.S. Cohen, Muon Cat. Fusion 1, 179 (1987).Google Scholar
  29. 29.
    D. Balm et al., Leningrad preprint 895 (1983) and Muon Cat. Fusion 1, 127 (1987).Google Scholar
  30. 30.
    A.N. Anderson et al., Los Alamos Research Proposal, (1985).Google Scholar
  31. 31.
    H. Bossy et al., Phys. Rev. Lett. 55, 1870 (1985).ADSCrossRefGoogle Scholar
  32. 32.
    H. Bossy et al., Muon Cat. Fusion 1, 115 (1987) and submitted to P. R. Lett. (1988).Google Scholar
  33. 33.
    K. Nagamine et al., Muon Cat. Fusion 1, 137 (1987).Google Scholar
  34. 34.
    W.H. Breunlich et al., Muon Cat. Fusion 1, 121 (1987).Google Scholar
  35. 35.
    V.V. Filchenkov et al., Nucl. Instr. and Meth. 228, 174 (1984).ADSCrossRefGoogle Scholar
  36. 36.
    J. Rafelski and B. Müller, Phys. Lett. 164B, 223 (1985).Google Scholar
  37. 37.
    M. Danos et al., ANR 302L-3 (1986), submitted to Phys. Rev. A. J. Rafelski et al., Muon Cat. Fusion 1, 315 (1987).Google Scholar
  38. 38.
    C. Petitjean, Panel Discussion on the future of Muon Catalyzed Fusion, Muon Cat. Fusion 1, 391 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • C. Petitjean
    • 1
  1. 1.Swiss Institute for Nuclear ResearchVilligenSwitzerland

Personalised recommendations