Analysis of Glial Scarring in the Mammalian CNS with a GFAP cDNA Probe

  • Pierre Rataboul
  • Philippe Vernier
  • Alain Privat
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 265)

Abstract

Reactive gliosis, leading to the formation of glial scar, is the response of astrocytes to CNS injury. It is an ubiquitous reaction observed in a large number of pathological conditions, such as mechanical and chemical lesions, as well as degenerative processes (Fulcrand and Privat, 1977; Eng and De Armond, 1982). This reaction is twofold, being characterized by an astrocyte multiplication (hyperplasia) as well as an hypertrophy of the perikarya and processes (Hain et al., 1960; Nathaniel and Nathaniel, 1981). The main intracellular event is an increase of the number of gliafilaments, paralleled by a raise in GFAP immunoreactivity.

Keywords

Glial Fibrillary Acidic Protein Reactive Gliosis Human Astrocytoma Ibotenic Acid Reactive Astrocytosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balcarek, J. M., and Cowan, N. J., 1985, Structure of the mouse glial fibrillary acidic protein gene. implications for the evolution of the intermediate filament multigene family, Nucleic Acid Res. 13: 5527–5543.Google Scholar
  2. Bhattacharya, B., Mandai, C., Basu, S., and Sarkar, P. K., 1987, Regulation of a-and ß-tubulin mRNAs in rat brain during synaptogenesis, Mol. Brain Res. 2:159–162.Google Scholar
  3. Bigbee, J. W., Bigner, D. D., Pegram, C., and Eng, L. F., 1983, Study of glial fibrillary acidic protein in a human glioma cell line grown in culture and as a solid tumor, J. Neurochem. 40:460–467.Google Scholar
  4. Dahl, D., and Bignami, A., 1973, Glial fibrillary acidic protein from normal human brain. Purification and properties, Brain Res. 57: 343–360.CrossRefGoogle Scholar
  5. De Armond, S. J, Fajardo, M., Naughton, S. A., and Eng, L.F., 1983, Degradation of glial fibrillary acidic protein by a calcium dependent proteinase an electroblot study, Brain Res. 262: 275–282.Google Scholar
  6. De Armond, S. J., Lee, Y. L., Kretzschmar, H. A., and Eng, L. F., 1986, Turnover of glial filaments in mouse spinal cord, J. Neurochem. 47:1749–1753.Google Scholar
  7. Dupouey, P., Benjelloun-Touini, S., and Gomes, D., 1985, Histochemical demonstration of an organized cytoarchitecture of the radial glia in the CNS of the embryonic mouse. Dev. Neurosci. 7:81–93.Google Scholar
  8. Eng, L. F., and De Armond, S. J., 1982, Immunocytochemical studies of astrocytes in normal development and disease. Adv. Cell Neurobiol. 3:145–171.Google Scholar
  9. Eng, L. F., Gerstl, B., and Vanderhaeghen, J. J., 1970, A study of proteins in old multiple sclerosis plaques, Trans. Amer. Soc. Neurochem. 1:42.Google Scholar
  10. Eng, L. F., Reier, P. J., and Houle, J. D., 1987, Astrocyte activation and fibrous gliosis glial fibrillary acidic protein immunostaining of astrocytes following intraspinal cord grafting of fetal CNS tissue, in: “Progress in brain research”, F. J. Seil, E. Herbert, B. M. Carlson, eds, Elsevier Science Publishers B. V., Biomedical Division, Amsterdam, Vol. 71, pp 439–455.Google Scholar
  11. Eng, L. F., Vanderhaegen, J. J., Bignami, A., and Gerstl, B., 1971, An acidic protein isolated from fibrous astrocytes, Brain Res. 28: 351–354.Google Scholar
  12. Faucon-Biguet, N., Buda, M., Lamouroux, A., Samolyk, D., and Mallet, J., 1986, Time course of the changes of TH mRNA in rat brain and adrenal medulla after a single injection of reserpine, EMBO J. 5: 287–291.Google Scholar
  13. Fedoroff, S., 1986, Prenatal ontogenesis of astrocytes, in: “Astrocytes”, S. Fedoroff, and Vernadakis edsGoogle Scholar
  14. Academic Press, Orlando, San Diego, New York, Austin, Boston, London, Sydney, Tokyo, Toronto, Vol. 1, pp 3567.Google Scholar
  15. Fedoroff, S., Neal, J., Opas, M., and Kalnius, V. I., 1984, Astrocyte cell lineage. III The morphology of differentiating mouse astrocytes in colony culture, J. Neurocvtol. 13: 1–20.CrossRefGoogle Scholar
  16. Fulcrand, J., and Privat, A., 1977, Neuroglial reactions secondary to Wallerian degeneration in the optic nerve of the postnatal rat Ultrastructural and quantitative study. J. Comp. Neurol. 176, 189–221.Google Scholar
  17. Geisler, N., and Weber, K., 1981, Comparison of the proteins of two immunologically distinct intermediate-sized filaments by amino acid sequence analysis. Desmin and vimentin, Proc. Natl. Acad. Sci. USA 78:4120–4123.Google Scholar
  18. Geisler, N., and Weber, K., 1982, The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J., 1: 1649–1656.Google Scholar
  19. Goldman, J. E., Schaumburg, H. H., and Norton, W. T., 1978, Isolation and characterization of glial filaments from human brain, J. Cell. Biol. 78:426–440.Google Scholar
  20. Hain, R. F., Rieke, W. O., and Everett, N. B., 1960, Evidence of mitosis in neuroglia as revealed by radioautography employing tritiated thymidine, J. Neuropathol. Exp. Neurol. 19:147–148.Google Scholar
  21. Hanahan, D., and Meselson, M., 1980, Plasmid screening at high colony density, Gene 10: 63–67.Google Scholar
  22. Isacson, O., Fischer, W., Wictorin, K., Dawbarn, D., and Björklund, A., 1987, Astroglial response in the excitotoxically lesioned neostriatum and its projection areas in the rat, Neuroscience 20: 1043–1056.Google Scholar
  23. Kitamura, T., Nakanishi, K., Watanabe, S., Endo, Y., and Fujita, S., 1987, GFA-protein gene expression on the astroglia in cow and rat brains, Brain Res. 423: 189–195.Google Scholar
  24. Kubota, Y., Inagaki, S., Kito, S., Takagi, H., and Smith, A. D., 1986, Ultrastructural evidence of dopaminergic input to enkephalinergic neurons in rat neostriatum, Brain Res. 367: 374–378.Google Scholar
  25. Latov, N., Nilaver, G., Zimmerman, E. A., Johnson, W. G., Silverman, A. J., Defendini, R., and Cote, L., 1979, Fibrillary astrocytes proliferate in response to brain injury: A study combining immunoperoxidase technique for glial fibrillary acidic protein and radioautography of tritiated thymidine, Develop. Biol. 72:381–384.Google Scholar
  26. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature (London) 283:249–256.Google Scholar
  27. Lewis, S. A., Balcarek, J. M., Krek, V., Shelanski, M., and Cowan, N. J., 1984, Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: Structural conservation of intermediate filaments, Proc. Natl. Acad. Sci. USA. 81:2743–2746.Google Scholar
  28. Lomedico, P. T., and Saunders, G. F., 1976, Preparation of pancreatic mRNAS cell-free translation of an insulinimmunoreactive peptide, Nucleic Acids Res. 2: 381–391.Google Scholar
  29. Malloch, G. D. A., Clark, J. B., and Burnet, F. R., 1987, Glial fibrillary acidic protein in the cytoskeletal and soluble protein fractions of the developing rat brain, J. Neurochem. 48:299–306.Google Scholar
  30. Marshall, J. F., 1985, Neural plasticity and recovery of function after brain injury, in: “International review of neurobiology, J. R. Smythies, R. J. Bradey, eds, Academic Press, London, Vol. 26, pp 201–247.Google Scholar
  31. Nathaniel, E.J.H., and Nathaniel DR, 1981, The reactive astrocyte, in: “Advances in Cellular Neurobiology”, S. Federoff and L. Hertz, eds, Academic Press, New York, Vol. 2, pp 249–301.Google Scholar
  32. Newcombe, J., Glynn, P., and Cuzner, M. L., 1982, The immunological identification of brain proteins on cellulose nitrate in human demyelinating disease, J. Neurochem. 38: 267–274.CrossRefGoogle Scholar
  33. Patel, A. J., Weir, M. D., Hunt, A., Tahourdin, C. S. M., and Thomas, D. G. T., 1985, Distribution of glutamine synthetase and glial fibrillary acidic protein and correlation of glutamine synthetase with glutamate decarboxylase in different regions of the rat central nervous system, Brain Res. 331: 1–9.Google Scholar
  34. Paxinos, G., and Watson, C., 1982, “The rat brain in stereotaxic coordinates”, Academic Press, Sydney.Google Scholar
  35. Pelham, H. R. B., and Jackson, R. J., 1976, An efficient mRNA-dependent translation system from reticulocyte lysates, Eur. J. Biochem. 67:247–256.Google Scholar
  36. Quax-Jeuken, Y. E. F. M., Quax, W. J., and Bloemendal, H., 1983, Primary and secondary structure of hamster vimentin predicted from the nucleotide sequence, Proc. Natl. Acad. Sci. USA 80:3548–3552.Google Scholar
  37. Rataboul, P., Faucon-Biguet, N., Vernier, P., De Vitry, F., Boularand, S., Privat, A., and Mallet, J., 1988, Identification of a human GFAP cDNA: A tool for the molecular analysis of reactive gliosis in the mammalian CNS, J. Neurosci. Res. 20:165–175.Google Scholar
  38. Rigby, P. W. J., Dieckmann, M., Rhodes, C., and Berg, P., 1977, Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I, J. Mol. Biol. 113:237–251.Google Scholar
  39. Schlaepfer, W. W., and Zimmerman, V. J. P., 1981, Calcium mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord, Neurochem. Res. 6:243–255.Google Scholar
  40. Sivam, S. P., Strunck, C., Smith, D. R., and Hong, J. S., 1986, Proenkephalin-A gene regulation in the rat striatum: influence of lithium and haloperidol. Mol. Pharmacol. 30:186–191.Google Scholar
  41. Smith, M. E., Perret, V., and Eng, L. F., 1984, Metabolic studies in vitro the CNS cytoskeletal proteins. synthesis and degradation, Neurochem. Res., 9: 1493–1507.Google Scholar
  42. Steinert, P. M., Steven, A. C., and Roop, D. R., 1985, The molecular biology of intermediate filaments, Cell 42: 411–419.Google Scholar
  43. Sternberger, I. A., 1979, “Immunocytochemistry”, 2nd ed., J. Wiley, ed., New-York, pp 104–170.Google Scholar
  44. Strömberg, I., Björklund, H., Dahl, D., Jonsson, G., Sundström, E., and Olson, L., 1986, AstrocyteGoogle Scholar
  45. responses to dopaminergic denervations by 6hydroxydopamine and 1-methyl - 4 - phenyl - 1,2,3,6 - tetrahydropyridine as evidenced by glial fribrillary acidic protein immunohistochemistry, Brain Res. Bull. 17(2):225–236.Google Scholar
  46. Tang, F., Costa, E., and Schwartz, J. P., 1983, Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks, Proc. Natl. Acad. Sci. USA 80:3841–3844.Google Scholar
  47. Vernier, P., Julien, J. F., Rataboul, P., Fourrier, O., Feuerstein, C., and Mallet, J., 1988, Similar time course changes in striatal levels of glutamic acid decarboxylase and proenkephaline mRNA following dopaminergic deafferentiation in the rat, J. Neurochem. 51: 1375–1380.CrossRefGoogle Scholar
  48. Weir, M. D., Patel, A. J., Hunt, A., and Thomas, D. G. T., 1984, Developmental changes in the amount of glial fibrillary acidic protein in three regions of the rat brain, Dev. Brain Res. 15:147–154.Google Scholar
  49. Yoshikawa, K., Williams, C., and Sabol, S.L., 1984, Rat brain preproenkephalin mRNA: cDNA cloning, primary structure, and distribution in the central nervous system, J. Biol. Chem. 259:14301–14308.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Pierre Rataboul
    • 1
  • Philippe Vernier
    • 2
  • Alain Privat
    • 3
  1. 1.B I ChimieLe VesinetFrance
  2. 2.Lab. Neurobiologie cellulaire et moléculaire, Dept Génétique MoléculaireCNRSGif-sur-YvetteFrance
  3. 3.Lab. Neurobiologie du DéveloppementEPHE — INSERM U.249 — CNRS UPR 41, Institut de BiologieMontpellierFrance

Personalised recommendations