Models of Vergence and Accommodation-Vergence Interactions

  • Bai-chuan Jiang
  • George K. Hung
  • Kenneth J. Ciuffreda
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)

Abstract

Vergence (or disjunctive) eye movements provide single vision by bringing the images of a bifixation target onto corresponding retinal points in the two eyes. When a target moves in depth, the brain recognizes the change in position of the retinal images and drives the extraocular muscles to bring these images into proper register on the retinas. Since vergence eye movements reflect the function of the brain, quantitative assessment of these movements can reveal fundamental information regarding the brain’s underlying neural control strategy. For this reason, an understanding of how vergence is controlled in both normal and symptomatic individuals has been one of the most important goals of vision scientists, clinicians, and bioengineers. This chapter provides a summary of some of the most significant research on modeling of the vergence system, as well as the interactions between accommodation and vergence.

Keywords

Leaky Integrator Retinal Disparity fIxation Disparity Accommodative Response Disparity Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahill, T., and Stark, L., 1979, The trajectories of saccadic eye movements, Sci. Am. 240: 108–117.CrossRefGoogle Scholar
  2. Blackie, C. A., and Howland, H., 2000, Stability analysis of two linear accommodation and convergence models, Opi. Vis. Sci. 77: 608–615.CrossRefGoogle Scholar
  3. Cook, G., and Stark, L., 1967, Derivation of a model for the human eye-positioning mechanism, Bull. Math. Biophys. 29: 153–175.CrossRefGoogle Scholar
  4. Ciuffreda, K. J., 1991, Accommodation and its anomalies, in: Vision and Vision Dysfunction: Visual Optics and Instrumentation, Vol. 1, W. N. Charman ed., Macmillan, London, pp. 231–279.Google Scholar
  5. Ciuffreda, K. J., 1998, Accommodation, the pupil, and presbyopia, in: Borish’s Clinical Refraction, W. J. Benjamin ed., W. B. Saunders Company, Philadel., PA., pp. 77–120.Google Scholar
  6. Ciuffreda, K. J., and Wallis, D., 1997, Myopes show increased susceptibility to nearwork aftereffects, Invest. Ophthal. Vis. Sci. 39: 1797–1803.Google Scholar
  7. Eadie, A. S., Carlin, P., and Gray, L. S., 1999, Modelling vergence eye movements using fuzzy logic, in: Current Oculomotor Research, Physiological and Psychological Aspects, eds., W. Becker, H. Deubel, and T. Mergner, eds., Kluwer Academic/Plenum Publishers, New York, pps. 179–181.Google Scholar
  8. Ebenholtz, S. M., and Fisher, S. K., 1982, Distance adaptation depends upon plasticity in the oculomotor control system, Percept. Psychophys. 31: 551–560.CrossRefGoogle Scholar
  9. Ehrlich, D. L., 1987, Near vision stress: vergence adaptation and accommodative fatigue, Ophthal. Physiol. Opt. 7: 353–357.CrossRefGoogle Scholar
  10. Fisher, S. K., Ciuffreda, K. J., 1988, Accommodation and apparent distance, Perception. 17: 609–621.CrossRefGoogle Scholar
  11. Fisher, S. K., Ciuffreda, K. J., and Levine, S., 1987, Tonic accommodation, accommodative hysteresis, and refractive error, Am. J. Optom. Physiol. Opt. 64: 799–809.CrossRefGoogle Scholar
  12. Fincham, E. F., and Walton, J., 1957, The reciprocal actions of accommodation and convergence,“ Physiol. 137: 488–508.Google Scholar
  13. Fry, G. A., 1939, Further experiments on the accommodation convergence relationship, Am. I Optom. 16: 325–336.CrossRefGoogle Scholar
  14. Goss, D. A., and Wickham, M. G., 1995, Retinal-image mediated growth as a mechanism for juvenile onset myopia and for emmetropization, Doc. Ophthalmol. 90: 341–375.CrossRefGoogle Scholar
  15. Green, D. G., Powers, M. K., and Banks, M. S., 1980, Depth of focus, eye size and visual acuity, Vis. Res. 20: 827–835.CrossRefGoogle Scholar
  16. Heath, G. G., 1956, Components of accommodation, Am. J Optom. Arch. Am. Acad. Optom. 33: 569–579.CrossRefGoogle Scholar
  17. Henson, D. B., and North, R., 1980, Adaptation to prism-induced heterophoria, An J. Optom. Physiol. Opt. 57: 129–137.CrossRefGoogle Scholar
  18. Hofstetter, H. W., 1945, The zone of clear single binocular vision: Part 1, Am. J Optom. Arch. Am. Acad. Optom. 22: 301–333.CrossRefGoogle Scholar
  19. Hokoda, S. C., and Ciuffreda, K. J., 1983, Theoretical and clinical importance of proximal vergence and accommodation, in Vergence Eye Movements: Basic and Clinical Aspects, C. M Schor and K. J. Ciuffreda, eds, Butterworths, Boston, pp. 75–97.Google Scholar
  20. Hung, G. K., 1998a, Dynamic model of the vergence eye movement system: simulations using MATLAB/SIMULINK, Comp. Meth. Prog. Biomed. 55: 59–68.CrossRefGoogle Scholar
  21. Hung, G. K., 1998b, Sensitivity analysis of the stimulus-response function of a static nonlinear accommodation model, IEEE. Trans. Biomed. Eng. 45: 335–341.CrossRefGoogle Scholar
  22. Hung, G. K., 1992a, A simple equation for relating AGA ratio to accommodative controller gain, Ophthal. Physiol. Opt. 12: 106–108.CrossRefGoogle Scholar
  23. Hung, G. K., 1992b, Adaptation model of accommodation and vergence, Ophthal. Physiol. Opt. 12: 319–326.CrossRefGoogle Scholar
  24. Hung, G. K., and Ciuffreda, K. J., 1988, Dual-mode behaviour in the human accommodation system, Ophthal. Physiol. Opt. 8: 327–332.CrossRefGoogle Scholar
  25. Hung, K., and Ciuffreda, K. J., 1994, Sensitivity analysis of relative accommodation and vergence, IEEE. Trans. Blamed. Eng. 41: 241–248.CrossRefGoogle Scholar
  26. Hung, G. K., Ciuffreda, K. J., and Rosenfield, 1996, Proximal contribution to a linear static model of accommodation and vergence, Ophthal. Physiol. Opt. 16: 31–41.CrossRefGoogle Scholar
  27. Hung, G. K., and Sernmlow, J. L., 1980, Static behavior of accommodation and vergence: computer simulation of an interactive dual-feedback system, IEEE. Trans. Blamed Eng. 27: 439–447.CrossRefGoogle Scholar
  28. Hung, G. K., and Semmlow, J. L., 1982, A quantitative theory of control sharing between accommodative and vergence controllers, IEEE. Trans. Biomed. Eng. 29: 364–370.CrossRefGoogle Scholar
  29. Hung, G. K., Senunlow, J. L., and Ciuffreda, K. J., 1986, A dual-mode dynamic model of the vergence eye movement system, IEEE. Trans. Biomed. Eng. 33: 1021–1028.CrossRefGoogle Scholar
  30. Hung, G. K., Zhu, H.-M., and Ciuffreda, K. J., 1997, Convergence and divergence exhibit different response characteristics to symmetric stimuli, Vis. Res. 37: 1197–1205.CrossRefGoogle Scholar
  31. Jiang, B.-C., 1996, Accommodative vergence is driven by the phasic component of the accommodative controller, Vis. Res. 36: 97–102.CrossRefGoogle Scholar
  32. Jiang, B.-C., 1997, Integration of a sensory component into the accommodation model reveals differences between eniietropia and late-onset myopia, Invest. Ophthal. Vis. Sci. 38: 1511–1516.Google Scholar
  33. Jiang, B.-C., 1999, Oculomotor function in nearwork — induced transient and permanent myopia, Chin. J. Optom. Oplithalmol. 1: 58–61 and 125–128.Google Scholar
  34. Jiang, B.-C., 2000a, A modified control model for steady-state accommodation, in: Accommodation and Vergence Mechanisms in the Visual System, O. Franzin, H. Richter, and L. Stark, eds., Birldiliuser Verlag, Basel, Switzerland, pp. 235–243.CrossRefGoogle Scholar
  35. Jiang, B.-C., 2000b, Defocus threshold. The VIII International Conference on Myopia, Boston, MA, 291–295.Google Scholar
  36. Jiang, B.-C., and Morse, S. E., 1999, Oculomotor functions and late-onset myopia, Ophthal. Physiol. Opt. 19: 165–172.CrossRefGoogle Scholar
  37. Jiang, B.-C., and White, J. M., 1999, Effect of accommodative adaptation on static and dynamic accommodation in emmetropia and late-onset myopia, Optom. Vis. Sci. 76: 295–302.CrossRefGoogle Scholar
  38. Jiang, B.-C., and Woessner, W. M., 1996, Dark focus and dark vergence: an experimental verification of the configuration of the dual-interactive feedback model, Ophthal. Physiol. Opt. 16: 342–347.CrossRefGoogle Scholar
  39. Jones, R. 1980, Fusional vergence: sustained and transient components, Am. J. Optom. Physiol. Opt. 57: 640–644.CrossRefGoogle Scholar
  40. Jones, R., and Kerr, K., 1971, Motor responses to conflicting asymmetrical vergence stimulus information, Am. J. Optom. 48: 989–1000.CrossRefGoogle Scholar
  41. Jones, R., and Kerr, K., 1972, Vergence eye movements to pairs of disparity stimuli with shape selection cues, Vis. Res. 12: 1425–1430.CrossRefGoogle Scholar
  42. Kotulak, J. C., and Schor, C. M., 1986a, The accommodative response to subthreshold blur and to perceptual fading during the Troxler phenomenon, Perception. 15: 7–15.CrossRefGoogle Scholar
  43. Kotulak, J. C., and Schor, C. M., 1986b, Temporal variations in accommodation during steady-state conditions, J. Opt. Soc. Am. A. 3: 223–227.CrossRefGoogle Scholar
  44. Krishnan, V. V., and Stark, L., 1975, Integral control in accommodation, Comp. Prog. Biomed. 4: 237–255.CrossRefGoogle Scholar
  45. Krishnan, V. V., and Stark, L., 1977, A heuristic model for the human vergence eye movement system, IEEE. Trans. Biomed. Eng. 24: 44–49.CrossRefGoogle Scholar
  46. Ludvigh, E., McKinnon, P., and Zartzeff, L., 1964, Temporal course of the relaxation of binocular duction (fusion) movements, Arch. Ophthalmol. 71: 389–399.CrossRefGoogle Scholar
  47. Maddox, E. E., 1893, The Clinical Use of Prisms; and the Decentering of Lenses. rd ed. Bristol, England: John Wright and Sons.Google Scholar
  48. Mordi, J. A., 1991, Accommodation, Age and Presbyopia, Ph.D. Dissertation. State Univ. of New York, State College of Optometry, New York, U.S.A.Google Scholar
  49. Mordi, J. A., and Ciuffreda, K. J., 1998, Static aspects of accommodation: age and presbyopia, Vis. Res. 38: 1643–1653.CrossRefGoogle Scholar
  50. Morgan, M. W., 1983, The Maddox analysis of vergence, in: Vergence Eye Movements: Basic and Clinical Aspects, C.M. Schor and K. J. Ciuffreda eds., Butterworths, Boston, pp. 15–21.Google Scholar
  51. North, R. V., Henson, D. B., and Smith, T. J., 1993, Influence of proximal, accommodative and disparity stimuli upon the vergence system, Ophthal. Physiol. Opt. 13: 239–243.CrossRefGoogle Scholar
  52. Ogle, K. N., 1972, Researches in Binocular Vision. Hafner, New York, pp. 59–93.Google Scholar
  53. Ogle, K. N., Martens, T. G., and Dyer, J. A., 1967, Binocular Vision and Fixation Disparity. Lea and Febiger, Philadel., PA, pp. 9–119.Google Scholar
  54. Ong, E., and Ciuffreda, K. J., 1995, Nearwork-induced transient myopia — a critical review, Doc Ophthalmol. 91: 57–85.CrossRefGoogle Scholar
  55. Ong, E., and Ciuffreda, K. J., 1997, Accommodation, Nearwork, and Myopia, Optometric Extension Program Foundation, Inc., Santa Ana, CA.Google Scholar
  56. O’Shea, W. F., Ciuffreda, K. J., Fisher, S. K., Tannen, B., and Super, P., 1988, Relation between distance heterophoria and tonic vergence, Am. J. Optom. Physiol. Opt. 65: 787–793.CrossRefGoogle Scholar
  57. Owens, D. A., 1984, The resting state of the eyes, Am. Sci. 72: 378–387.Google Scholar
  58. Owens, D. A., and Leibowitz, H. W., 1980, Accommodation, convergence, and distance perception in low illumination, Am. J. Optom. Physiol. Opt. 57: 540–550.CrossRefGoogle Scholar
  59. Owens, D. A., and Tyrrell, R. A., 1992, Lateral phoria at distance: contribution of accommodation, Invest. Ophthal. Vis. Sci. 33: 2733–2743.Google Scholar
  60. Patel, S. S., 1995, A neural network model of short-term dynamics of human disparity vergence system, Ph.D. Dissertation, Univ. of Houston, Houston, TX.Google Scholar
  61. Patel, S. S., Ogmen, H., White, J. M., and Jiang, B., 1997, Neural network model of short-term horizontal disparity vergence dynamics, Vis. Res. 37: 1383–1399.CrossRefGoogle Scholar
  62. Pobuda, M., and Erkelens, C. J., 1993, The relationship between absolute disparity and ocular vergence, Biol. Cyber. 68: 221–228.CrossRefGoogle Scholar
  63. Rashbass, C., and Westheimer, G., 1961, Disjunctive eye movements, J. Physiol. 159: 339–360.Google Scholar
  64. Ripps, H., Chin, N. B., Siegel, I. M., and Breinin, G. M., 1962, The effect of pupil size on accommodation, convergence, and the AC/A ratio, Invest. Ophthal. Vis. Sci. 1: 127–135.Google Scholar
  65. Rosenfield, M., Ciuffreda, K. J., and Chan, H.-W., 1995, Effects of age on the interaction between AC/A and CA/C ratios, Ophthal. Physiol. Opt. 15: 451–455.CrossRefGoogle Scholar
  66. Rosenfield, M., Ciuffreda, K. J., and Hung, G. K., 1991, The linearity of proximally induced accommodation and vergence, Invest. Ophthal. Vis. Sci. 32: 2985–2991.Google Scholar
  67. Rosenfield, M., Ciuffreda, K. J., and Novogrodsky, L., 1992a, Contribution of accommodation and disparity-vergence to transient nearwork-induced myopic shifts, Ophthal. Physiol. Opt. 12: 433–436.CrossRefGoogle Scholar
  68. Rosenfield, M., Ciuffreda, K. J., and Rosen, J., 1992b, Accommodative response during distance optometric test procedures. J. Am. Optom. Assoc. 63: 614–618.Google Scholar
  69. Rosenfield, M., and Gilmartin, B., 1990, Effect of target proximity on the open-loop accommodative response, Optom. Vis. Sci. 67: 74–79.CrossRefGoogle Scholar
  70. Schor, C. M., 1979, The relationship between fusional vergence and fixation disparity, Vis. Res. 19: 1359–1367.CrossRefGoogle Scholar
  71. Schor, C. M., 1985, Models of mutual interactions between accommodation and convergence, Am. J. Optom. Physiol. Opt. 62: 369–374.CrossRefGoogle Scholar
  72. Schor, C. M., 1992, A dynamic model of cross-coupling between accommodation and convergence: simulation of step and frequency responses. Optom. Vis. Sci. 69: 258–269.CrossRefGoogle Scholar
  73. Schor, C. M., 1999, The influence of interactions between accommodation and convergence on the lag of accommodation, Ophthal. Physiol. Opt. 19: 134–150.CrossRefGoogle Scholar
  74. Schor, C. M., and Homer, D., 1989, Adaptive disorders of accommodation and vergence in binocular dysfunction, Ophthal Physiol. Opt. 9: 264–268.CrossRefGoogle Scholar
  75. Schor, C. M., and Kotulak, J. C., 1986, Dynamic interactions between accommodation and convergence are velocity sensitive, Vis. Res. 26: 927–942.CrossRefGoogle Scholar
  76. Semmlow, J. L., and Hung, G. K., 1983, The near response: theories of control, in: Vergence Eye Movements: Basic and Clinical Aspects, C.M. Schor and K. J. Ciuffreda eds., Butterworths, Boston, pp. 175–195.Google Scholar
  77. Semmlow, J. L., Hung, G. K., and Ciuffreda, K. J., 1986, Quantitative assessment of disparity vergence components, Invest. Ophthal. Vis. Sci. 27: 558–564.Google Scholar
  78. Semmlow, J. L., Hung, G. K., Horng, J.-L., and Ciuffreda, K. J., 1993, Initial control component in disparity vergence eye movements, Ophthal. Physiol. Opt. 13: 48–55.CrossRefGoogle Scholar
  79. Sethi, B., and North, R. V., 1987, Vergence adaptive changes with varying magnitudes of prism-induced disparities and fusional amplitudes, Am. J. Optom. Physiol. Opt. 64: 263–268.CrossRefGoogle Scholar
  80. Stark, L., Kenyon, R. V., Krishnan, V. V., and Ciuffreda, K. J., 1980, Disparity vergence: A proposed name for a dominant component of binocular vergence eye movements, Am. J. Optom. Physiol. Opt. 57: 606–609.CrossRefGoogle Scholar
  81. Toates, F. M., 1972, Further studies on the control of accommodation and convergence, Measurement and ControL 5: 58–61.Google Scholar
  82. Toates, F. M. 1974, Vergence eye movements, Doc. Ophthal. 37: 153–214.CrossRefGoogle Scholar
  83. Toates, F. M., 1975, Control Theory in Biology and Experimental Physiology, Hutchinson, London.Google Scholar
  84. Westheimer, G., 1963, Amphetamine, barbiturates and accommodation-convergence, Arch. Ophthal. 70: 830–836.CrossRefGoogle Scholar
  85. Westheimer, G., Mitchell, A. M., 1956, Eye movement responses to convergence stimuli, Arch. Ophthalmol. 55: 848–856.CrossRefGoogle Scholar
  86. Wick, B., 1985, Clinical factors in proximal vergence, Am. J. Optom. Physiol. Opt. 62: 1–18.CrossRefGoogle Scholar
  87. Windhorst, U., 1996, Spinal cord and brainstem: Pattern generators and reflexes, in Greger R and U. Windhorst, eds., Comprehensive Human Physiology: From Cellular Mechanisms to Integration, Vol. 1, Springer-Verlag, Berlin, pp. 1007–1032.Google Scholar
  88. Wolf; K. S., Bedell, H. E., and Pedersen, S. B., 1990, Relations between accommodation and vergence in darkness, Optom. Vis. Sci. 67: 89–93.Google Scholar
  89. Wong, L, and Jiang, B.-C., 2000, Stimulus/response threshold of accommodation in emmetropes and myopes, Invest. Ophthal. Vis. Sci. 41: S816.Google Scholar
  90. Zadeh, L., 1965, Fuzzy sets, Inf. Control. 8: 338–353.MathSciNetCrossRefMATHGoogle Scholar
  91. Zadeh, L., 1994, The Role of Fuzzy Logic in Modeling, Identification and Control, Modeling Identification and Control. 15: 191–203.MathSciNetCrossRefMATHGoogle Scholar
  92. Zuber, B., and Stark, L., 1968, Dynamical characteristics of fusional vergence eye movement system, IEEE Trans. Sys. Sci. Cybern. 4: 72–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Bai-chuan Jiang
    • 1
  • George K. Hung
    • 2
  • Kenneth J. Ciuffreda
    • 3
  1. 1.College of Optometry, Health Professions DivisionNova Southeastern UniversityFt. LauderdaleUSA
  2. 2.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  3. 3.Dept. of Vision SciencesState University of New York, State College of OptometryNew YorkUSA

Personalised recommendations