Models of Refractive Error Development

  • George K. Hung
  • Kenneth J. Ciuffreda
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)

Abstract

Clarity of the visual image is a vital component of ocular health. A common method for assessing image clarity is to measure distance visual acuity. The development of an uncorrected refractive error, however, reduces visual acuity, and in turn adversely impacts upon the quality of ocular health. This chapter discusses various analytical approaches taken in the understanding of refractive error development.

Keywords

Axial Length Refractive Error Horizontal Cell Outer Plexiform Layer Proteoglycan Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. W., and McBrien, N. A. 1992, Prevalence of myopia and myopic progression in a population of clinical microscopists, Optom. Vis. Sc 69: 467–473.Google Scholar
  2. Alward, W.L., Bender, T.R., Demske, J.A., and Hall, D.B., 1985, High prevalence of myopia among young adult Yupik Eskimo, Can. J. Ophthalmol. 20: 241–245.Google Scholar
  3. Avetisov, E. S., Savitskaya, N. F., Vinetskaya, M. I., and lomdina, E. N., 1984, A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups, Metab. Pediatr. Syst. Ophthalmol. 7: 183–188.Google Scholar
  4. Bartmann, M., and Schaeffel, F., 1994, A simple mechanism for emmetropization without cues from accommodation or colour, Vis. Res. 34: 873–876.Google Scholar
  5. Bennett, A. G., and Rabbetts, R.B., 1989, Clinical Visual Optics, Butterworth-Heinemann, Woburn, MA, pg. 75.Google Scholar
  6. Mackie, C. A. and, Howland, H. C., 1999, Extension of the Flitcroft model of emmetropization: inclusion of pupil size, Ophthal. Physiol. Opt. 19: 112–125.Google Scholar
  7. Bradley, D. V., Fernandes, A., Tigges, M., and Boothe, R.G., 1996, Diffuser contact lenses retard axial elongation in infant rhesus monkeys, Vis. Res. 36: 509–514.Google Scholar
  8. Castrén, J. A., and Pohjola, S., 1961a, Refraction and scleral rigidity, Acta Ophthalmol. 39: 1011–1014.CrossRefGoogle Scholar
  9. Castrén, J. A., and Pohjola, S., 1961b, Scleral rigidity in puberty, Acta Ophthalmol. 39: 1015–1019.CrossRefGoogle Scholar
  10. Cheng, H.-M., Omah, S. S., and Kwong, K. K., 1992, Shape of the myopic eye as seen with high-resolution magnetic resonance imaging, Optom. Vis. Sci. 69: 698–701.Google Scholar
  11. Christiansen, A. M. and Wallman, J., 1991, Evidence that increased scleral growth underlies visual deprivation myopia in chicks, Invest. Ophthal. Vis. Sci., 32: 2134–2150.Google Scholar
  12. Ciuffreda, K. J., 1991, Accommodation and its anomalies, in: Vision and Visual Dysfunction: Visual Optics and Instrumentation, Vol. 1, W. N. Charman, ed., Macmillan, London, pp. 231–279.Google Scholar
  13. Ciuffreda, K. J., 1998, Accommodation, pupil, and presbyopia, in: Borish’s Clinical Refraction, W. J. Benjamin, ed,, W. B. Saunders Co, Philadelphia, PA, pp. 77–120.Google Scholar
  14. Ciuffreda, K. J., Kenyon R. V., 1983, Accommodative vergence and accommodation in normals, amblyopes, and strabiemics, in: Vergence Eye Movements: Basic and Clinical Aspects, C. M. Schor and K. J. Ciuffinda, eds., Butterworths, Boston, MA, pp. 101–173.Google Scholar
  15. Ciuffreda, K. J., and Wallis, D. M., 1998, Myopes show increased susceptibility to nearwork aftereffects, Invest. Ophthal. Vis. Sci. 39: 1797–1803.Google Scholar
  16. Curtin, B. J., 1985, The etiology of myopia, in: The Myopias: Basic Science and Clinical Management, Harper and Row, Philadel. PA, pp. 61–151.Google Scholar
  17. Dowling, J. E., 1996, Retinal processing of vision, in Comprehensive Human Physiology: From Cellular Mechanisms to Integration, Vol. 1, Greger R and U. Windhorst, eds., Springer-Verlag, Berlin, pp. 773–778.CrossRefGoogle Scholar
  18. Fledelius, H. C., and Stubgaard, M., 1986, Changes in refraction and corneal curvature during growth and adult life. A cross-sectional study, Acta Ophthalmol. 64: 487–491.Google Scholar
  19. Flitcroft, D. I., 1998, A model of the contribution of oculomotor and optical factors to emmetropization and myopia, Vis. Res., 38: 2869–2879.Google Scholar
  20. Goh, W.S., and Lam, C.S., 1994, Changes in refractive trends and optical components of Hong Kong Chinese aged 19–39, Ophthal. Physiol. Opt. 14: 378–382.Google Scholar
  21. Goldschmidt, E., 1968, On the etiology of myopia–an epidemiological study. Acta Ophthalmol. 98 (suppl): 1–72.Google Scholar
  22. Goss, D. A., and Erickson, P., 1987, Meridional corneal components of myopia progression in young adults and children, Am. J. Optom. Physiol. Opt. 64: 475–481.Google Scholar
  23. Goss, D. A., Hampton, M. J., and Wickham, M. G., 1988, Selected review on genetic factors in myopia, J. Am. Optom. Assoc. 59: 875–884.Google Scholar
  24. Goss, D. A., and Jackson, T. W., 1993, Cross-sectional study of changes in the ocular components in school children, Appl. Opt. 32: 4169–4173.Google Scholar
  25. Goss, D. A., and Wickham, M. G., 1995, Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization, Doc. Ophthalmol. 90: 341–375.Google Scholar
  26. Goss, D. A., and Winkler, R. L., 1983, Progression of myopia in youth: age of cessation, Am. J. Optom. Physiol. Opt. 60: 651–658.Google Scholar
  27. Gottlieb, M. D., Joshi, H. B., and Nickla, D. L., 1990, Scleral changes in chicks with form-deprived myopia, Curr. Eye Res. 9: 1157–1165.Google Scholar
  28. Grosvenor, T., and Goss, D. A., 1998, Role of the cornea in emmetropia and myopia, Optom. Vis. Sci. 75: 132–145.Google Scholar
  29. Grosvenor, T., and Goss, D. A., 1999, Clinical Management of Myopia. Butterworth-Heinemann, Boston, MA, pp. 49–62.Google Scholar
  30. Gwiazda, J., Thorn F., Bauer J., and Held, R., 1993, Enunetropization and the progression of manifest refraction in children followed from infancy to puberty, Clin. Vis. Sci. 8: 337–344.Google Scholar
  31. Hosaka, A., 1988, Population studies–myopia experience in Japan, Acta Ophthalmol (Sapp) (Kbh), 185: 37–40.Google Scholar
  32. Hung, G. K., 1990, Fixation disparity under open-and closed-loop accommodation, Ophthal. Physiol. Opt. 10: 211–214.Google Scholar
  33. Hung, G. K., 1992. Adaptation model of accommodation and vergence, Ophthal. Physiol. Opt. 12: 319–326.Google Scholar
  34. Hung, G. K., 1998, Sensitivity analysis of the stimulus-response function of a static nonlinear accommodation model, IEEE Trans Biomed Engin. 45: 335–341.CrossRefGoogle Scholar
  35. Hung, G. K., and Ciuffreda, K. J., 1999, Model of refractive error development, Cur. Eye. Res., 19: 41–52.Google Scholar
  36. Hung, G. K. and Ciuffreda, K. J., 2000a, Differential retinal-defocus magnitude during eye growth provides the appropriate direction signal, Med. Sci. Monitor. 6: 791–795.Google Scholar
  37. Hung, G. K., and Ciuffreda, K. J., 2000b, Quantitative analysis of the effect of near lens addition on accommodation and myopigenesis, Cur. Eye. Res. 20: 293–312.Google Scholar
  38. Hung, G. K., and Ciuffreda, K. J., 2000c, A unifying theory of refractive error development, Bull. Math. Biol. 62: 1087–1108.Google Scholar
  39. Iuvone, P. M., Tigges, M., Stone, R. A., Lambert, S., and Laties, A. M., 1991, Effect of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in primate model of myopia, Invest. Ophthal. Vis. Sci. 32: 1674–1677.Google Scholar
  40. Javitt, J. C., and Chiang, Y. P., 1994, The socioeconomic aspects of laser refractive surgery, Arch. Ophthalmol. 112: 1526–1530.Google Scholar
  41. Jiang, B. C. and Woessner, W. M., 1996, Increase in axial length is responsible for late-onset myopia, Optom. Vis. Sci. 73: 231–234.Google Scholar
  42. Kolb, H., 1994, The architecture of functional neural circuits in the vertebrate retina. The Proctor Lecture, Invest. Ophthalmol. Vis. Sci. 35: 2385–2404.Google Scholar
  43. Lam, C. S., Goh, W. S., Tang, Y. K., Tsui, K. K., Wong W. C., and Man, T. C., 1994, Changes in refractive trends and optical components of Hong Kong Chinese aged over 40 years, Ophthal. Physiol. Opt. 14: 383–388.Google Scholar
  44. Lin, L. L. K., Shih, Y. F., Lee, Y. C., Hung, P. T., and Hou, P. K., 1996, Changes in ocular refraction and its components among medical students - a 5-year longitudinal study, Optom. Vis. Sci. 73: 495–498.Google Scholar
  45. Kimura, T. 1965, Developmental change of the optical components in twins, Acta Soc. Ophthalmol. Jpn. 69: 963–969.Google Scholar
  46. Mahlman, H. E. 1982, Handbook of Federal Vision Requirements and Information. Professional Press, Chicago, IL, USA, pp. 8–18.Google Scholar
  47. Marzani, D., and Wallman, J., 1997, Growth of the two layers of the chick sclera is modulated reciprocally by visual conditions, Invest. Ophthal. Vis. Sci. 38: 1726–1739.Google Scholar
  48. McBrien, N. A., Gentle, A., and Cottriall, C., 1999, Optical correction of induced axial myopia in the tree shrew: implications for emmetropization, Optom. Vis. Sci. 76: 419–427.Google Scholar
  49. McBrien, N. A., and Millodot, M., 1986, The effect of refractive error on the accommodative response gradient, Ophthal. Physiol. Opt. 6: 145–149.Google Scholar
  50. Medina, A., 1987, A model of emmetropization, the effect of corrective lenses, Acta. Ophthalmol. 65: 585–571.Google Scholar
  51. Medina, A., and Fariza, E., 1993, Emmetropization as a first-order feedback system, Vis. Res. 33: 21–26.Google Scholar
  52. Mutti, D.D., Zadnik K., and Adams, A.J., 1996, Myopia. The nature vs nurture debate goes on, Invest. Ophthal. Vis. Sci. 37: 952–957.Google Scholar
  53. Norton, T. T., 1999, Animal models of myopia: learning how vision controls the size of the eye, Instit. Lab. Animal Res. Journal. 40: 59–77.Google Scholar
  54. Norton, T. T., and Rada, J. A., 1995, Reduced extracellular matrix in mammalian sclera with induced myopia, Vis. Res. 35: 1271–1281.Google Scholar
  55. O’Leary, D. J., Chung, K. M., and Mohikin, N., 2000, Undercorrection causes more rapid progression of myopia in children, Am. Acad. Optom. 2000 (Abstract), pg. 24.CrossRefGoogle Scholar
  56. O’Leary, D. J., Chung, K. M., and Othman, S., 1992, Contrast reduction without myopia induction in monkey, Invest. Ophthal. Vis. Sci. 33: S712.Google Scholar
  57. Ong, E., and Ciuffreda, K. J., 1995, Nearwork-induced transient myopia - a critical review, Doc. Ophthalmol. 91: 57–85.Google Scholar
  58. Ong, E., and Ciuffreda, K. J., 1997, Accommodation, Nearworic, and Myopia, Optometric Extension Program Foundation, Inc, Santa Ana, CA, pp. 76–96, 177–201.Google Scholar
  59. Ong, E., Ciuffreda, K. J., and Tannen, B., 1993, Static accommodation in congenital nystagmus, Invest. Ophthal. Vis. Sci. 34: 194–204.Google Scholar
  60. Pässinen, O., Hemminki, E., and Klemetti, A., 1989, Effect of spectacle use and accommodation on myopia progression: final results of a three-year randomised clinical trial among schoolchildren, Br. J. Ophthalmol. 73: 547–551.Google Scholar
  61. Phillips, J. R., and McBrien, N. A., 1995, Form deprivation myopia: elastic properties of the sclera. Ophthal. Physiol. Opt. 15: 357–362.Google Scholar
  62. Rada, J. A., McFarland, A. L., Comuet, P. K., and Hassell, J. R., 1992, ProteoglycanGoogle Scholar
  63. synthesis by scleral chondrocytes is modulated by a vision dependent mechanism, Cur. Eye Res. 11: 767–782.Google Scholar
  64. Reeder, A. P., and McBrien, N. A., 1993, Biochemical changes in the sclera of tree shrew with high degrees of experimental myopia, Ophthal. Physiol. Opt. 13: 105.Google Scholar
  65. Rosenfield, M., and Gilmartin, B., 1998, Myopia and nearwork: causation or merely association?, in: Myopia and Nearwork, M. Rosenfield and B. Gilmartin, eds., Butterworth-Heinemann, Oxford, pp. 193–206.Google Scholar
  66. Scammon, R. E., and Armstrong, E. L., 1925, On the growth of the human eyeball and optic nerve, I Comp. Neurol. 38: 165–219.Google Scholar
  67. Schaeffel, F., and Howland, H. C., 1988, Mathematical model of emmetropization in the chicken, I Opt. Soc. Am. A 5: 2080–2086.Google Scholar
  68. Siegwart, J. T. Jr., and Norton, T. T., 1999, Regulation of the mechanical properties of tree shrew sclera by the visual environment, Vis. Res. 39: 387–407.Google Scholar
  69. Smith, G., and Atchison, D. A., 1997, The Eye and Visual Optical Instruments, Cambridge Univ. Press, Cambridge, United Kingdom, pp. 274, 796.CrossRefGoogle Scholar
  70. Smith, E. L., and Hung, L. F., 1999, The role of optical defocus in regulating refractive development in infant monkeys, Vis. Res. 39: 1415–1435.Google Scholar
  71. Smith, E. L., and Hung, L. F., 2000, Form deprivation myopia in monkeys is a graded phenomenon, Vis. Res. 40: 371–381.Google Scholar
  72. Sorsby, A., Sheridan, M., and Leary, G. A., 1962, Refraction and Its Components in Twins, London: Her Majesty’s Stationary Service.Google Scholar
  73. Sperduto, R. D., Seigel, D., Roberts, J., and Rowland, M., 1983, Prevalence of myopia in the United States, Arch. Ophthalmol. 101: 405–407.Google Scholar
  74. Stark, L., 1968, Neurological Control Systems, Studies in Bioengineering, Plenum Press, New York, pp. 205–219.CrossRefGoogle Scholar
  75. Stone, R. A., Lin, T., and Laties, A. M., 1989, Retinal dopamine and form-deprivation myopia, Proc. Natl. Acad. Sci. 86: 704–706.Google Scholar
  76. Tigges, M., Tigges, J., Fernendes, A., Effers, H. M., and Gammon, J. A., 1990, Postnatal axial eye elongation in normal and visually deprived rhesus monkeys, Invest. Ophthal. Vis. Sci. 31: 1035–1046.Google Scholar
  77. Troilo, D., 1989, The Visual Control of Eye Growth in Chicks, Ph. D. Dissertation, Faculty of Biology, City University of New York, New York, NY.Google Scholar
  78. Troilo, D., Gottlieb, M. D., and Waltman, J., 1987, Visual deprivation causes myopia in chicks with optic nerve section, Cur. Eye Res. 6: 993–999.Google Scholar
  79. Troilo, D., Nickla, D. L., and Waltman, J., 2000a, Choroidal thickness changes during altered eye growth and refractive state in a primate, Invest. Ophthat Vis. Sci. 41: 1249–1258.Google Scholar
  80. Troilo, D., Nickla, D. L., and Wildsoet, C. F., 2000b, Form deprivation myopia in mature common Marmoset ( Callitbrix jaccbus ), Invest. Ophthal. Vis. Sci. 41: 2043–2049.Google Scholar
  81. Waltman, J., 1997,. Can myopia be prevented? in: 14111 Biennial Research to Prevent Blindness Science Writers Seminar in Ophthalmology, Research to Prevent Blindness, New York, pp. 50–52.Google Scholar
  82. Werblin, F., 1973, Control of sensitivity of the retina, Sei. Am. 228 (1): 71–79.Google Scholar
  83. Wick, B., 2000, On the etiology of refractive error–Parts I-III, J. Optom. Vis. Devel. 31: 5–21, 48–63, 93–99.Google Scholar
  84. Wildsoet, C. F., 1998, Structural correlates of myopia, in: Myopia and Nearwork, M. Rosenfield and B. Gilmartin, eds., Butterworth-Heinemann, Oxford, pp. 32–51.Google Scholar
  85. Wildsoet, C. F., and Collins, M. J., 2000, Competing defocus stimuli of opposite sign produce opposite effects in eyes with intact and sectioned optic nerves in the chick, Invest. Ophthal. Vis. Sci. 41: S738.Google Scholar
  86. Wildsoet, C. F., and Pettigrew, J. D., 1988, Experimental myopia and anomalous eye growth patterns unaffected by optic nerve section in chickens: Evidence for local control of eye growth, Clin. Vis. Sci. 3: 99–107.Google Scholar
  87. Wildwoet, C. F., and Waltman, J., 1995, Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks, Vis. Sei. 35: 1175–1194.Google Scholar
  88. Wilson, J. R., Fernandes, A., Chankler, C. V., Tigges, M., Boothe, R. G., and Gammon, J. A., 1987, Abnormal development of the axial length of aphakic monkey eyes, Invest. Ophthal. Vis. Sci. 28: 2096–2099.Google Scholar
  89. Winauer, J. A., Zhu, X., Park, T., and Waltman, J., 2000, Is myopic blur more important than sharp vision for positive-lens compensation? Invest. Ophthal. Vis. Sci. 41: S136.Google Scholar
  90. Windhorst, U., 1996, Specific networks of the cerebral cortex: functional organization and plasticity, in: Comprehensive Human Physiology: From Cellular Mechanisms to Integration. Vol. 1, R. Greger and U. Windhorst, eds., Springer-Verlag, Berlin, pp. 1105–1136.CrossRefGoogle Scholar
  91. Woodruff, M.E., and Samek M.J., 1977, A study of the prevalence of spherical equivalent refractive states and anisometropia in Amerind population in Ontario, Can. J. Public Health. 68: 414–424.Google Scholar
  92. Wu, M. M.-M., and Edwards, M. H., 1999, The effect of having myopic parents: An analysis of myopia in three generations, Optom. Vis. Sci. 76: 387–392.Google Scholar
  93. Yackle, K., and Fitzgerald, D. E., 1999, Emmetropization: an overview, J. Behay. Optom. 10: 38–43.Google Scholar
  94. Young, F.A., Leary, G.A., Baldwin, W.R., West, D.C., Box, R.A., Harris, E., and Johnson, C., 1969, The transmission of refractive errors within eskimo families, Am. J. Optom. Arch. Am. Acad. Optom. 46: 676–685.Google Scholar
  95. Zhang, M.-Z., Saw, S.-M., Hong, R.-Z., Fu, Z.-F., Yang, H., Shui, Y.-B., Yap, M. K. H., and Chew, S.-J., 2000, Refractive errors in Singapore and Xiamen, China - A comparative study in school children aged 6 to 7 years, Optom. Vis. Sci., 77: 302–308.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • George K. Hung
    • 1
  • Kenneth J. Ciuffreda
    • 2
  1. 1.Dept. of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Dept. of Vision SciencesState University of New York State College of OptometryNew YorkUSA

Personalised recommendations