Neural Mechanisms of Behavioral Plasticity in an Invertebrate Model System

  • W. Jackson Davis

Abstract

The relatively recent capacity of neuroscientists to unravel the central neural networks mediating simple behaviors, aptly illustrated in the preceding chapters of this book, has enabled a revolutionary paradigmatic advance in neurobiology. Namely, complex, higher-order behavioral phenomena, many of which previously defied even attempts at precise definition, can now be approached mechanistically in relatively simple and defined neural networks. Such behavioral phenomena include, for example, motivation, drive, mood, choice, attention, and learning, both nonassociative (i.e., habituation, sensitization) and associative (i.e., classical and operant conditioning). Many of these phenomena may be considered forms of behavioral plasticity, i.e., changes in behavior that are acquired because of experience.

Keywords

Feeding Behavior Behavioral Plasticity Command Neuron Food Stimulus Withdrawal Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bicker, G., Davis, W. J., Matera, E. M., Kovac, M. P., and Stormo-Gipson, J., 1982a, Mechano- and chemoreception in Pleurobranchaea californica. I. Extracellular analysis of afferent responses, J. Comp. Physiol 149:221–234.CrossRefGoogle Scholar
  2. Bicker, G., Davis, W. J., and Matera, E. M., 1982b, Mechano- and chemoreception in Pleurobranchaea californica. II. Neuroanatomical and intracellular analysis of centripetal pathways, J. Comp. Physiol. 149:235–250.CrossRefGoogle Scholar
  3. Croll, R. P., and Davis, W. J., 1981, Motor program switching in Pleurobranchaea: I. Behavioural and electromyographic study of ingestion and egestion in intact specimens, J. Comp. Physiol. 145:277 – 287.CrossRefGoogle Scholar
  4. Croll, R. P., and Davis, W. J., 1982, Motor program switching in Pleurobranchaea: II. Ingestion and egestion in the reduced preparation, J. Comp. Physiol. 147:143–154.CrossRefGoogle Scholar
  5. Croll, R. P., Davis, W. J., and Kovac, M. P., 1985a, Neural mechanisms of motor program switching in the mollusc Pleurobranchaea. I. Central motor programs underlying ingestion, egestion and the “neutral” rhythm(s), J. Neurosci. 5(l):48–55.PubMedGoogle Scholar
  6. Croll, R. P., Kovac, M. P., and Davis, W. J., 1985b, Neural mechanisms of motor program switching in the mollusc Pleurobranchaea. II. Role of the ventral white cell and other identified buccal neurons, J. Neurosci. 5(1):56–63.PubMedGoogle Scholar
  7. Croll, R. P., Kovac, M. P., Davis, W. J., and Matera, E. M., 1985c, Neural mechanisms of motor program switching in the mollusc Pleurobranchaea. III. Role of the paracerebral neurons and other identified brain neurons, J. Neurosci. 5(1):64–7l.PubMedGoogle Scholar
  8. Davis, W. J., 1976, Organizational concepts in the central motor networks of invertebrates, in: Neural Control of Locomotion (R. Herman, S. Grillner, P. S. G. Stein, and D. Stuart, eds.), Plenum, New York, pp. 265–292.Google Scholar
  9. Davis, W. J., and Gillette, R., 1978, Neural correlate of behavioral plasticity in command neurons of Pleurobranchaea, Science 199:801–804.PubMedCrossRefGoogle Scholar
  10. Davis, W. J., and Kovac, M. P., 1981, The command neuron and the organization of movement, Trends Neurosci. 4:73–76.CrossRefGoogle Scholar
  11. Davis, W. J., and Matera, E. M., 1982, Chemoreception in gastropod mollusks: Electron microscopy of putative receptor cells, J. Neurobiol. 13:79–84.PubMedCrossRefGoogle Scholar
  12. Davis, W. J., and Mpitsos, G. J., 1971, Behavioral choice and habituation in the marine mollusk Pleurobranchaea californica MacFarland (Gastropoda, Opisthobranchia), Z. vergl. Physiol. 75:207–232.Google Scholar
  13. Davis, W. J., Siegler, M. V. S., and Mpitsos, G. J., 1973, Distributed neuronal oscillators and efference copy in the feeding system of Pleurobranchaea, J. Neurophysiol. 36:258–274.PubMedGoogle Scholar
  14. Davis, W. J., Mpitsos, G. J., and Pinneo, J. M., 1974a, The behavioral hierarchy of the mollusk Pleurobranchaea. I. The dominant position of the feeding behavior, J. Comp. Physiol. 90:207–224.CrossRefGoogle Scholar
  15. Davis, W. J., Mpitsos, G. J., and Pinneo, J. M., 1974b, The behavioral hierarchy of the mollusk Pleurobranchaea. II. Hormonal suppression of feeding associated with egg-laying, J. Comp. Physiol. 90:225–243.CrossRefGoogle Scholar
  16. Davis, W. J., Mpitsos, G. J., Siegler, M. V. S., Pinneo, J. M., and Davis, K. B., 1974c, Neuronal substrates of behavioral hierarchies and associative learning in the mollusk Pleurobranchaea, Am. Zool. 14:1037–1050.Google Scholar
  17. Davis, W. J., Mpitsos, G.J., Pinneo, J. M., and Ram, J. L., 1977, Modification of the behavioral hierarchy of Pleurobranchaea. I. Satiation and feeding motivation, J. Comp. Physiol. A 117:99–125.CrossRefGoogle Scholar
  18. Davis, W. J., Villet, J., Lee, D., Rigler, M., Gillette, R., and Prince, E., 1980, Selective and differential avoidance learning in the feeding and withdrawal behaviors of Pleurobranchaea, J. Comp. Physiol. A 138:157–165.CrossRefGoogle Scholar
  19. Davis, W. J., Gillette, R., Kovac, M. P., Croll, R. P., and Matera, E. M., 1983, Organization of synaptic inputs to paracerebral feeding command interneurons of Pleurobranchaea californica. III. Modifications induced by experience, J. Neurophysiol. 49:1557–1572.PubMedGoogle Scholar
  20. Davis, W. J., Croll, R. P., Kovac, M. P., and Matera, E. M., 1984, Brain oscillator(s) underlying rhythmic cerebral and buccal motor output in the mollusc, Pleurobranchaea californica, J. Exp. Biol. 110:1–15.PubMedGoogle Scholar
  21. Gillette, R., and Davis, W. J., 1977, The role of metacerebral giant neuron in the feeding behavior of Pleurobranchaea, J. Comp. Physiol. A 116:129–159.CrossRefGoogle Scholar
  22. Gillette, R., Kovac, M. P., and Davis, W. J., 1978, Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite, Science 199:798–801.PubMedCrossRefGoogle Scholar
  23. Gillette, R., Gillette, M. U., and Davis, W. J., 1980, Action potential broadening and endogenously sustained bursting are substrates of command ability in a feeding neuron of Pleurobranchaea, J. Neurophysiol. 43:669–685.Google Scholar
  24. Gillette, R., Gillette, M. U., and Davis, W. J., 1982a, Substrates of command ability in a buccal neuron of Pleurobranchaea. I. Mechanisms of action potential broadening, J. Comp. Physiol. 146:449–459.CrossRefGoogle Scholar
  25. Gillette, R., Gillette, M. U., and Davis, W. J., 1982b, Substrates of command ability in a buccal neuron of Pleurobranchaea. II. Potential role of cyclic AMP,J. Comp. Physiol. 146:461–470.CrossRefGoogle Scholar
  26. Gillette, R., Kovac, M. P., and Davis, W. J., 1982c, Control of feeding motor output by paracerebral neurons in the brain of Pleurobranchaea californica, J. Neurophysiol. 47:885–908.PubMedGoogle Scholar
  27. Kovac, M. P., and Davis, W. J., 1977, Behavioral choice: Neurophysiological mechanism in Pleurobranchaea, Science 198:632–634.PubMedCrossRefGoogle Scholar
  28. Kovac, M. P., and Davis, W. J., 1980a, Reciprocal inhibition between feeding and withdrawal behaviors in Pleurobranchaea, J. Comp. Physiol. A 139:77–86.CrossRefGoogle Scholar
  29. Kovac, M. P., and Davis, W. J., 1980b, Neural mechanism underlying behavioral choice in Pleurobranchaea, J. Neurophysiol. 43:469–487.PubMedGoogle Scholar
  30. Kovac, M. P., Davis, W. J., Matera, E. M., and Gillette, R., 1982, Functional and structural correlates of cell size in paracerebral neurons of Pleurobranchaea californica, J. Neurophysiol. 47:909–927.PubMedGoogle Scholar
  31. Kovac, M. P., Davis, W. J., Matera, E. M., and Croll, R. P., 1983a, Organization of synaptic inputs to paracerebral feeding command interneurons of Pleurobranchaea californica. I. Excitatory inputs, J. Neurophysiol. 49:1517–1538.PubMedGoogle Scholar
  32. Kovac, M. P., Davis, W. J., Matera, E. M., and Croll, R. P., 1983b, Organization of synaptic inputs to paracerebral feeding command interneurons of Pleurobranchaea californica. II. Inhibitory inputs, J. Neurophysiol. 49:1539–1556.PubMedGoogle Scholar
  33. Kovac, M. P., Davis, W. J., Matera, E. M., Morielli, A., and Croll, R. P., 1985, Learning: Neural analysis in the isolated brain of a previously trained mollusc, Pleurobranchaea californica, Brain Res. (in press).Google Scholar
  34. Matera, E. M., and Davis, W. j., 1982, Paddle cilia (discocilia) in chemosensitive structures of the gastropod mollusk Pleurobranchaea californica, Cell Tissue Res. 222:25–40.PubMedCrossRefGoogle Scholar
  35. Mpitsos, G. J., and Collins, S. D., 1975, Learning: Rapid aversive conditioning in the gastropod mollusc Pleurobranchaea, Science 188:954–957.PubMedCrossRefGoogle Scholar
  36. Mpitsos, G. J., and Davis, W. J., 1973, Learning: Classical and avoidance conditioning in the mollusk Pleurobranchaea, Science 180:317–320.PubMedCrossRefGoogle Scholar
  37. Mpitsos, G. J., Collins, S. D., and McClellan, A. D., 1978, Learning: A model system for physiological studies, Science 199:497–506.PubMedCrossRefGoogle Scholar
  38. Ram, J. L., Salpeter, S., and Davis, W. J., 1977, Pleurobranchaea egg-laying hormone: Localization and partial purification, J. Comp. Physiol. B 119:171–194.CrossRefGoogle Scholar
  39. Siegler, M. V. S., 1977, Motor neurone coordination and sensory modulation in the feeding system of the mollusc Pleurobranchaea californica, J. Exp. Biol. 71:27–48.PubMedGoogle Scholar
  40. Siegler, M. V. S., Mpitsos, G. J., and Davis, W. J., 1974, Motor organization and generation of rhythmic feeding output in the buccal ganglion of Pleurobranchaea, J. Neurophysiol. 37:1173–1196.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • W. Jackson Davis
    • 1
  1. 1.The Thimann Laboratories and The Long Marine LaboratoriesUniversity of California at Santa CruzSanta CruzUSA

Personalised recommendations