Selection of Bacterial Mutants Defective in Fatty Acid Synthesis for the Study of Membrane Biogenesis

  • David F. Silbert

Abstract

Lipids are important structural components of most biological membranes. Very great differences are observed in the lipids of various types of membranes, but little is known about the mechanisms governing these differences in the lipid composition. Furthermore, the relationship between the specific lipid composition and membrane structure is not well understood. While the lipids of most cell membranes are generally organized into bilayers, the distribution of specific lipid molecules within this type of structure and their interactions with other membrane constituents have yet to be clearly delineated. Part of this structural information will come from studies on the physical behavior of mixtures of lipids found in biological membranes under physiological conditions. In recent years, considerable progress has been achieved in the modification and simplification of the lipid composition of cultured cells through genetic and nutritional means and in the development of physical methods to study the properties of lipids in the membranes of such systems.

Keywords

Unsaturated Fatty Acid Fatty Acid Synthesis Acyl Carrier Protein Fatty Acid Synthetase Fatty Acid Supplement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelberg, E. A., Mandel, M., and Chen, G. C. C., 1965, Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K-12, Biochem. Biophys. Res. Commun. 18:788.CrossRefGoogle Scholar
  2. Alberts, A. W., and Vagelos, P. R., 1968, Acetyl CoA carboxylase. I. Requirement for two protein fractions, Proc. Natl. Acad. Sci. USA 59:561.PubMedCrossRefGoogle Scholar
  3. Alberts, A. W., Majerus, P. W., and Vagelos, P. R., 1969a, Acetyl CoA acyl carrier protein transacylase, malonyl-CoA acyl carrier protein transacylase, β-ketoacyl acyl carrier protein synthase, in : Methods in Enzymology, Vol. XIV : Lipids (J. Lowenstein, ed.), pp. 50–60, Academic Press, New York.Google Scholar
  4. Alberts, A. W., Nervi, A. M., and Vagelos, P. R., 1969b, Acetyl CoA carboxylase. II. Demonstration of biotin-protein and biotin carboxylase subnits, Proc. Natl. Acad. Sci. USA 63:1319.PubMedCrossRefGoogle Scholar
  5. Alberts, A. W., Gordon, S. G., and Vagelos, P. R., 1971, Acetyl CoA carboxylase: The purified transcarboxylase component, Proc. Natl. Acad. Sci. USA 68:1259.PubMedCrossRefGoogle Scholar
  6. Alberts, A. W., Bell, R. M., and Vagelos, P. R., 1972, Acyl carrier protein. XV. Studies of β-ketoacyl-acyl carrier protein synthetase, J. Biol. Chem. 247:3190.PubMedGoogle Scholar
  7. Beacham, I. R., and Silbert, D. F., 1973, Studies on the uridine diphosphate-galactose: lipopolysaccharide galactosyltransferase reaction using a fatty acid mutant of Escherichia coli, J. Biol. Chem. 248:5310.Google Scholar
  8. Bell, R. M., 1974, Mutants of Escherichia coli defective in membrane phospholipid synthesis: Macromolecular synthesis in an sn-glycerol-3-phosphate acyltransferase Km mutant, J. Bacteriol. 117:1065.PubMedGoogle Scholar
  9. Bressler, R., and Wakil, S. J., 1961, Studies on the mechanism of fatty acid synthesis. IX. The conversion of malonyl coenzyme A to long chain fatty acids, J. Biol. Chem. 236:1643.Google Scholar
  10. Brock, D. J. H., Kass, L. R., and Bloch, K., 1967, β-Hydroxydecanoyl thioester dehydrase. II. Mode of action, J. Biol. Chem. 242:4432.PubMedGoogle Scholar
  11. Chapman, D., 1973, Some recent studies of lipids, lipid-cholesterol, and membrane systems, in: Biological Membranes (D. Chapman and D. F. H. Wallach, eds.), pp. 91–144, Academic Press, New York.Google Scholar
  12. Cronan, J. E., Jr., 1972, A new method for selection of Escherichia coli mutants defective in membrane lipid synthesis, Nature (London) New Biol. 240:21.CrossRefGoogle Scholar
  13. Cronan, J. E., Jr., and Bell, R. M., 1974, Mutants of Escherichia coli defective in membrane phospholipid synthesis: Mapping of the structural gene for L-glycerol-3-phosphate dehydrogenase, J. Bacteriol. 118:598.PubMedGoogle Scholar
  14. Cronan, J. E., Jr., and Gelmann, E. P., 1973, An estimate of the minimum amount of unsaturated fatty acid required for growth of Escherichia coli, J. Biol. Chem. 248: 1188.Google Scholar
  15. Cronan, J. E., Jr., and Vagelos, P. R., 1972, The phospholipids of Escherichia coli, metabolism and function, Biochim. Biophys. Acta 265:25.PubMedCrossRefGoogle Scholar
  16. Cronan, J. E., Jr., Birge, C. H., and Vagelos, P. R., 1969, Evidence for two genes specifically involved in unsaturated fatty acid biosynthesis in Escherichia coli, J. Bacteriol. 100:601.Google Scholar
  17. Cronan, J. E., Jr., Ray, T. K., and Vagelos, P. R., 1970, Selection and characterization of an E. coli mutant defective in membrane lipid biosynthesis, Proc. Natl. Acad. Sci. USA 65:737.PubMedCrossRefGoogle Scholar
  18. Davis, M. B., and Silbert, D. F., 1974, Changes in cell permeability following a marked reduction of saturated fatty acid content of Escherichia coli K-12, Biochim. Biophys. Acta 373:224.PubMedCrossRefGoogle Scholar
  19. Dimroth, P., Guchhait, R. B., Stoll, E., and Lane, M. D., 1970, Enzymatic carboxylation of biotin: Molecular and catalytic properties of a component enzyme of acetyl CoA carboxylase, Proc. Natl. Acad. Sci. USA 67:1353.PubMedCrossRefGoogle Scholar
  20. Esfahani, M., Barnes, E. M., Jr., and Wakil, S. J., 1969, Control of fatty acid composition in phospholipids of Escherichia coli: Response to fatty acid supplements in a fatty acid auxotroph, Proc. Natl. Acad. Sci. USA 64:1057.PubMedCrossRefGoogle Scholar
  21. Esfahani, M., Ioneda, T., and Wakil, S. J., 1971a, Studies on the control of fatty acid metabolism. III. Incorporation of fatty acids into phospholipids and regulation of fatty acid synthetase of Escherichia coli, J. Biol. Chem. 246:50.Google Scholar
  22. Esfahani, M., Limbrick, A. R., Knutton, S., Oka, T., and Wakil, S. J., 1971b, The molecular organization of lipids in the membrane of Escherichia coli: Phase transitions, Proc. Natl. Acad. Sci. USA 68:3180.PubMedCrossRefGoogle Scholar
  23. Fall, R. R., and Vagelos, P. R., 1972, Acetyl coenzyme A carboxylase, molecular forms and subunit composition of biotin carboxyl carrier protein, J. Biol. Chem. 247:8005.PubMedGoogle Scholar
  24. Fox, C. F., Law, J. H., Tsukagoshi, N., and Wilson, G., 1970, A density label for membranes, Proc. Natl. Acad. Sci. USA 67:598.PubMedCrossRefGoogle Scholar
  25. Glaser, M., Bayer, W. H., Bell, R. M., and Vagelos, P. R., 1973, Regulation of macromolecular biosynthesis in a mutant of Escherichia coli defective in membrane phospholipid biosynthesis, Proc. Natl. Acad. Sci. USA 70:385.PubMedCrossRefGoogle Scholar
  26. Guchhait, R. B., Moss, J., Sokolski, W., and Lane, M. D., 1971, The carboxyl transferase component of acetyl CoA carboxylase: Structural evidence for intersubunit translocation of the biotin prosthetic group, Proc. Natl. Acad. Sci. USA 68:653.PubMedCrossRefGoogle Scholar
  27. Hantke, K., and Braun, V., 1973, Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the TV-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane, Eur. J. Biochem. 34:284.PubMedCrossRefGoogle Scholar
  28. Harder, M. E., Beacham, I. R., Cronan, J. E., Jr., Beacham, K., Honegger, J. L., and Silbert, D. F., 1972, Temperature-sensitive mutants of Escherichia coli requiring saturated and unsaturated fatty acids for growth : Isolation and properties, Proc. Natl. Acad. Sci. USA 69:3105.PubMedCrossRefGoogle Scholar
  29. Harder, M. E., Ladenson, R. C, Schimmel, S. C, and Silbert, D. F., 1974, Mutants of Escherichia coli with temperature-sensitive malonyl CoA-acyl carrier protein trans-acylase, J. Biol. Chem. 249:7468.PubMedGoogle Scholar
  30. Helmkamp, G. M., and Bloch, K., 1969, β-Hydroxydecanoyl thioester dehydrase, structure and active site, J. Biol. Chem. 244:6014.PubMedGoogle Scholar
  31. Henning, U., Dennert, G., Rehm, K., and Deppe, G., 1969, Effects of oleate starvation in a fatty acid auxotroph of Escherichia coli K-12, J. Bacteriol. 98:784.PubMedGoogle Scholar
  32. Hong, J., and Ames, B. N., 1971, Localized mutagenesis of any specific small region of the bacterial chromosome, Proc. Natl. Acad. Sci. USA 68:3158.PubMedCrossRefGoogle Scholar
  33. Hsu, C. C, and Fox, C. F., 1970, Induction of the lactose transport system in a lipid-synthesis defective mutant of Escherichia coli, J. Bacteriol. 103:410.Google Scholar
  34. Kass, L. R., 1969, β-Hydroxydecanoyl thioester dehydrase from Escherichia coli, in: Methods in Enzymology, Vol. XIV: Lipids (J. Lowenstein, ed.), pp. 73–80, Academic Press, New York.Google Scholar
  35. Kass, L. R., Brock, D. J. H., and Bloch, K., 1967, β-Hydroxydecanoyl thioester dehydrase. I. Purification and properties, J. Biol. Chem. 242:4418.PubMedGoogle Scholar
  36. Keith, A. D., Wisnieski, B. J., Henry, S., and Williams, J. C, 1973, Membranes of yeast and neurospora : Lipid mutants and physical studies, in : Lipids and Biomembranes of Eukaryotic Microorganisms (J. A. Erwin, ed.), pp. 259–321, Academic Press, New York.Google Scholar
  37. Kito, M., Lubin, M., and Pizer, L. I., 1969, A mutant of Escherichia coli defective in phos-phatic acid synthesis, Biochem. Biophys. Res. Commun. 34:454.PubMedCrossRefGoogle Scholar
  38. Kleeman, W., and McConnell, H. M., 1974, Lateral phase separations in Escherichia coli membranes, Biochim. Biophys. Acta 345:220.CrossRefGoogle Scholar
  39. Lasker, S. E., and Milvy, P. (eds.), 1973, Electron spin resonance and nuclear magnetic resonance in biology and medicine and magnetic resonance in biological systems, Ann. N.Y. Acad. Sci. 222:460–667.Google Scholar
  40. Lee, A. G., Birdsall, N. J. M., and Metcalfe, J. C, 1974, Nuclear magnetic relaxation and the biological membrane, in: Methods in Membrane Biology, Vol. 2 (E. D. Korn, ed.), pp. 1–156, Plenum Press, New York.CrossRefGoogle Scholar
  41. Lin, E. C. C, Lerner, S. A., and Jorgensen, S. E., 1962, A method for isolating constitutive mutants for carbohydrate-catabolizing enzymes, Biochim. Biophys. Acta 60: 422.PubMedCrossRefGoogle Scholar
  42. Low, K. B., 1973, Rapid mapping of conditional and auxotrophic mutations in Escherichia coli K-12, J. Bacteriol. 113:798.PubMedGoogle Scholar
  43. Lubin, M., 1962, Enrichment of auxotrophic mutant populations by recycling, J. Bacteriol. 83:696.PubMedGoogle Scholar
  44. Machtiger, N. A., and Fox, C. F., 1973, Biochemistry of bacterial membranes, Ann. Rev. Biochem. 42:575.PubMedCrossRefGoogle Scholar
  45. Majerus, P. W., Alberts, A. W., and Vagelos, P. R., 1964, The acyl carrier protein of fatty acid synthesis: Purification, physical properties, and substrate binding site, Proc. Natl. Acad. Sci. USA 51:1231.PubMedCrossRefGoogle Scholar
  46. Majerus, P. W., Alberts, A. W., and Vagelos, P. R., 1969a, Acyl carrier protein from Escherichia coli, in: Methods in Enzymology, Vol. XIV (J. Lowenstein, ed.), pp. 43–50, Academic Press, New York.Google Scholar
  47. Majerus, P. W., Alberts, A. W., and Vagelos, P. R., 1969b, β-Hydroxybutyryl acyl carrier protein dehydrase from Escherichia coli, in: Methods in Enzymology, Vol XIV: Lipids (J. Lowenstein, ed.), pp. 64–66, Academic Press, New York.Google Scholar
  48. Mavis, R. D., and Vagelos, P. R., 1972, The effect of phospholipid fatty acid composition on membranous enzymes in Escherichia coli, J. Biol. Chem. 247:652.PubMedGoogle Scholar
  49. McConnell, H. M., and McFarland, B. G., 1970, Physics and chemistry of spin labels, Q. Rev. Biophys. 3:91.PubMedCrossRefGoogle Scholar
  50. McElhaney, R. N., 1974, The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures, J. Mol. Biol. 84:145.PubMedCrossRefGoogle Scholar
  51. Moore, S., and Stein, W. H., 1963, Chromatographic determination of amino acids by the use of automatic recording equipment, in : Methods in Enzymology, Vol. VI (S. P. Colowick and N. O. Kaplan, eds.), pp. 819–831, Academic Press, New York.Google Scholar
  52. Ohta, A., Okonogi, K., Shibuya, I., and Maruo, B., 1914a, Isolation of Escherichia coli mutants with temperature-sensitive formation of phosphatidylethanolamine, J. Gen. Appl. Microbiol. 20:21.CrossRefGoogle Scholar
  53. Ohta, A., Shibuya, I., Maruo, B., Ishinaga, M., and Kito, M., 1914b, An extremely labile phosphatidylserine synthetase of an Escherichia coli mutant with the temperature-sensitive formation of phosphatidylethanolamine, Biochim. Biophys. Acta 348:449.Google Scholar
  54. Oldfield, E., and Chapman, D., 1972, Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol, FEBS Lett. 23:285.PubMedCrossRefGoogle Scholar
  55. Osborn, M. J., Rick, P. D., Lehmann, V., Rupprecht, E., and Singh, M., 1974, Structure and biogenesis of the cell envelope of gram-negative bacteria, Ann. N. Y. Acad. Sci. 235:52.PubMedCrossRefGoogle Scholar
  56. Oseroff, A. R., Robbins, P. W., and Burger, M. M., 1973, The cell surface membrane: Biochemical aspects and biophysical probes, Ann. Rev. Biochem. 42:647.PubMedCrossRefGoogle Scholar
  57. Overath, P., and Raufuss, E., 1967, The induction of the enzymes of fatty acid degradation in Escherichia coli, Biochem. Biophys. Res. Commun. 29:28.CrossRefGoogle Scholar
  58. Overath, P., and Trauble, H., 1973, Phase transitions in cells, membranes, and lipids of Escherichia coli: Detection by fluorescent probes, light scattering, and dilatometry, Biochemistry 12:2625.PubMedCrossRefGoogle Scholar
  59. Overath, P., Pauli, G., and Schairer, H. U., 1969, Fatty acid degradation in Escherichia coli, Eur. J. Biochem. 7:559.CrossRefGoogle Scholar
  60. Overath, P., Schairer, H. U., and Stoffel, W., 1970, Correlation of in vivo and in vitro phase transitions of membrane lipids in E. coli, Proc. Natl. Acad. Sci. USA 67:606.PubMedCrossRefGoogle Scholar
  61. Overath, P., Hill, F. F., and Lamnek-Hirsch, I., 1971, Biogenesis of E. Coli membrane: Evidence for randomization of lipid phase, Nature (London) New Biol. 234:264.Google Scholar
  62. Pardee, A., Jacob, F., and Monod, J., 1959, The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by E. coli, J. Mol. Biol. 1:165.CrossRefGoogle Scholar
  63. Pizer, L. I., Merlie, J. P., and Ponce de Leon, M., 1974, Metabolic consequences of limited phospholipid synthesis in Escherichia coli, J. Biol. Chem. 249:3212.Google Scholar
  64. Prescott, D. J., and Vagelos, P. R., 1972, Acyl carrier protein, Adv. Enzymol. 36:269.PubMedGoogle Scholar
  65. Radda, G. K., 1975, Fluorescent probes in membrane studies, in: Methods in Membrane Biology, Vol. 4 (E. D. Korn, ed.) pp. 97–188, Plenum Press, New York.Google Scholar
  66. Schairer, H. U., and Overath, P., 1969, Lipids containing trans-unsaturated fatty acids change the temperature characteristic of thiomethylgalactoside accumulation in Escherichi coli, J. Mol. Biol. 44:209.PubMedCrossRefGoogle Scholar
  67. Scheidler, P. J., and Steim, J. M., 1975, Differential scanning calorimetry of biological membranes: instrumentation, in: Methods in Membrane Biology, Vol. 4 (E. D. Korn, ed.), pp. 77–96, Plenum Press, New York.Google Scholar
  68. Schlenk, H., and Gellerman, J. L., 1960, Esterification of fatty acids with diazomethane on a small scale, Anal. Chem. 32:1412.CrossRefGoogle Scholar
  69. Shipley, G. G., 1973, Recent x-ray diffraction studies of biological membranes and membrane components, in: Biological Membranes (D. Chapman and D. F. H. Wallach, eds.), pp. 1–90, Academic Press, New York.Google Scholar
  70. Silbert, D. F., 1970, Arrangement of fatty acyl groups in phosphatidylethanolamine from a fatty acid auxotroph of Escherichia coli, Biochemistry 9:3631.Google Scholar
  71. Silbert, D. F., 1975, Genetic modification of membrane lipid, Ann. Rev. Biochem. 44: 315.PubMedCrossRefGoogle Scholar
  72. Silbert, D. F., and Vagelos, P. R., 1967, Fatty acid mutant of E. coli lacking a β-hydroxydecanoyl thioester dehydrase, Proc. Natl. Acad. Sci. USA 58:1579.PubMedCrossRefGoogle Scholar
  73. Silbert, D. F., and Vagelos, P. R., 1974, Systems for membrane alteration: Unsaturated fatty acid auxotroph of Escherichia coli, in : Methods in Enzymology, Vol. XXXII, Part B : Biomembranes (S. Fleisher, L. Packer, and R. Estabrook, eds.), pp. 856–864, Academic Press, New York.Google Scholar
  74. Silbert, D. F., Ruch, F., and Vagelos, P. R., 1968, Fatty acid replacements in a fatty acid auxotroph of Escherichia coli, J. Bacteriol 95:1658.Google Scholar
  75. Silbert, D. F., Cohen, M., and Harder, M. E., 1972, The effect of exogenous fatty acids on fatty acid metabolism in Escherichia coli K-12, J. Biol. Chem. 247:1699.PubMedGoogle Scholar
  76. Silbert, D. F., Ulbright, T. M., and Honegger, J. L., 1973a, Utilization of exogenous fatty acids for complex lipid biosynthesis and its effect on de novo fatty acid formation in Escherichia coli K-12, Biochemistry 12:164.Google Scholar
  77. Silbert, D. F., Ladenson, R. C, and Honegger, J. L., 19736, The unsaturated fatty acid requirement in Escherichia coli, Biochim. Biophys.Acta 311:349.Google Scholar
  78. Silbert, D. F., Cronan, J. E., Beacham, I. R., and Harder, M. E., 1974, Genetic engineering of membrane lipid, Fed. Proc. 33:1725.PubMedGoogle Scholar
  79. Sokawa, Y., Nakao, E., and Kaziro, Y., 1968, On the nature of the control by RC gene in E. coli: Amino acid-dependent control of lipid synthesis, Biochem. Biophys. Res. Commun. 33:108.PubMedCrossRefGoogle Scholar
  80. Trauble, H., and Overath, P., 1973, The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions, Biochim. Biophys. Acta 307:491.PubMedCrossRefGoogle Scholar
  81. Vagelos, P. R., Alberts, A. W., and Majerus, P. R., 1969, β-Ketoacyl acyl carrier protein reductase, in: Methods in Enzymology, Vol. XIV: Lipids (J. Lowenstein, ed.), pp. 60–63, Academic Press, New York.Google Scholar
  82. Weeks, G., and Wakil, S. J., 1968, Studies on the mechanism of fatty acid synthesis. XVIII. Preparation and general properties of the enoyl acyl carrier protein reductases from Escherichia coli, J. Biol. Chem. 243:1180.Google Scholar
  83. Weeks, G., and Wakil, S. J., 1969, Enoyl acyl carrier protein reductase from Escherichia coli in: Methods in Enzymology, Vol. XIV: Lipids (J. Lowenstein, ed.), pp. 66–73, Academic Press, New York.Google Scholar
  84. Weeks, G., Shapiro, M., Burns, R. O., and Wakil, S. J., 1969, Control of fatty acid metabolism. I. Induction of the enzymes of fatty acid oxidation in Escherichia coli, J. Bacteriol. 97:827.PubMedGoogle Scholar
  85. Wilson, G., and Fox, C. F., 1971, Biogenesis of microbial transport systems: Evidence for coupled incorporation of newly synthesized lipids and proteins into membrane, J. Mol. Biol. 55:49.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • David F. Silbert
    • 1
  1. 1.Department of Biological Chemistry Division of Biology and Biomedical SciencesWashington UniversitySt. LouisUSA

Personalised recommendations