Membrane Targeting in Secretion

  • Michael Schrader
Part of the Subcellular Biochemistry book series (SCBI, volume 37)

Abstract

Regulated secretion and exocytosis require the selective packaging of regulated secretory proteins in secretory storage organelles and the controlled docking and fusion of these organelles with the plasma membrane. Secretory granule biogenesis involves sorting of secretory proteins and membrane components both at the level of the trans-Golgi network and the immature secretory granule. Sorting is thought to be mediated by selective protein aggregation and the interaction of these proteins with specific membrane domains. There is now considerable interest in the understanding of the complex lipid—protein and protein—protein interactions at the trans-Golgi network and the granule membrane. A role for lipid microdomains and associated sorting receptors in membrane targeting and granule formation is vividly discussed for (neuro)endocrine cells. In exocrine cells, however, little has been known of granule membrane composition and membrane protein function. With the cloning and characterization of granule membrane proteins and their interactions at the inner leaflet of zymogen granules of pancreatic acinar cells, it is now possible to elcuidate their function in membrane targeting and sorting of zymogens at the molecular level.

Keywords

Acinar Cell Lipid Raft Secretory Granule Pancreatic Acinar Cell Exocrine Pancreas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CgA,B

chromogranin A, B

CPE

carboxypeptidase E

CV

condensing vacuole

GAG

glucosaminoglycan

GP

glycoprotein

GPI

glycosylphosphatidylinositol

ISGs

immature secretory granules

MßCD

methyl-β-cyclodextrin

MSGs

mature secretory granules

NSF

N-ethyl-maleimide-sensitive factor

PC

prohormone convertase

PI-PLC

phosphatidylinositolspecific phospholipase C

POMC

pro-opiomelanocortin

PRPs

proline-rich proteins

RSPs

regulated secretory proteins

SH3

src homology 3 domain binding motif

SNAP

soluble N-ethylmaleimide-sensitive factor attachment protein

SNAREs

soluble N-ethyl-maleimide-sensitive factor attachment protei receptors

TGN

trans-Golgi network

THP

Tamm-Horsfall protein

ZGM

zymogen granule membrane

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfalah, M., Jacob, R., Preuss, U., Zimmer, K. E, Naim, H. and Naim, H. Y. (1999). 0-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts. Curr Biol 9, 593–6.PubMedCrossRefGoogle Scholar
  2. An, S. J., Hansen, N. J., Hodel, A., Jahn, R. and Edwardson, J. M. (2000). Analysis of the association of syncollin with the membrane of the pancreatic zymogen granule. J Biol Chem 275, 11306–11.PubMedCrossRefGoogle Scholar
  3. Antonin, W, Wagner, M., Riedel, D., Brose, N. and Jahn, R. (2002). Loss of the zymogen granule protein syncollin affects pancreatic protein synthesis and transport but not secretion. Mol Cell Biol 22, 1545–54.PubMedCrossRefGoogle Scholar
  4. Aryan, P. and Castle, D. (1992). Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biology 2, 327–31.CrossRefGoogle Scholar
  5. Aryan, P. and Castle, D. (1998). Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332, 593–610.Google Scholar
  6. Aryan, P., Kuliawat, R., Prabakaran, D., Zavacki, A. M., Elahi, D., Wang, S. and Pilkey, D. (1991). Protein discharge from immature secretory granules displays both regulated and constitutive characteristics. J Biol Chem 266, 14171–4.Google Scholar
  7. Beaudoin, A. R., St-Jean, P. and Grondin, G. (1991). Ultrastructural localization of GP2 in acinar cells of pancreas: presence of GP2 in endocytic and exocytic compartments. J Histochem Cytochem 39, 575–88.PubMedCrossRefGoogle Scholar
  8. Berg, N. B. and Young, R. W. (1971). Sulfate metabolism in pancreatic acinar cells. J Cell Biol 50, 469–83.PubMedCrossRefGoogle Scholar
  9. Blair, E. A., Castle, A. M. and Castle, J. D. (1991). Proteoglycan sulfation and storage parallels storage of basic secretory proteins in exocrine cells. Am J Physiol 261, C897–905.PubMedGoogle Scholar
  10. Blazquez, M., Thiele, C., Huttner, W. B., Docherty, K. and Shennan, K. I. (2000). Involvement of the membrane lipid bilayer in sorting prohormone convertase 2 into the regulated secretory pathway. Biochem J 349, 843–52.PubMedGoogle Scholar
  11. Brand, S. H., Laurie, S. M., Mixon, M. B. and Castle, J. D. (1991). Secretory carrier membrane proteins 31–35 define a common protein composition among secretory carrier membranes. J Biol Chem 266, 18949–57.PubMedGoogle Scholar
  12. Braun, M. and Thevenod, F. (2000). Photoaffinity labeling and purification of ZG-16p, a high-affinity dihydropyridine binding protein of rat pancreatic zymogen granule membranes that regulates a K(+)-selective conductance. Mol Pharmacol 57, 308–16.PubMedGoogle Scholar
  13. Brion, C., Miller, S. G. and Moore, H. P. (1992). Regulated and constitutive secretion. Differential effects of protein synthesis arrest on transport of glycosaminoglycan chains to the two secretory pathways. J Biol Chem 267, 1477–83.PubMedGoogle Scholar
  14. Brown, D. A. and Rose, J. K. (1992). Sorting of GPI-anchored proteins to glycolipidenriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–44.PubMedCrossRefGoogle Scholar
  15. Cabana, C., Hugon, J. S. and Lamy, E (1981). Freeze-fracture and deep-etching studies on zymogen-granule membranes of the rat pancreas. Cell Tissue Res 214, 355–67.PubMedCrossRefGoogle Scholar
  16. Castle, A. M. and Castle, J. D. (1993). Novel secretory proline-rich proteoglycans from rat parotid. Cloning and characterization by expression in AtT-20 cells. J Biol Chem 268, 20490–6.PubMedGoogle Scholar
  17. Castle, A. M. and Castle, J. D. (1998a). Enhanced glycosylation and sulfation of secretory proteoglycans is coupled to the expression of a basic secretory protein. Mol Biol Cell 9, 575–83.PubMedGoogle Scholar
  18. Castle, D. and Castle, A. (1998b). Intracellular transport and secretion of salivary proteins. Crit Rev Oral Biol Med 9, 4–22.PubMedCrossRefGoogle Scholar
  19. Chamberlain, L. H., Burgoyne, R. D. and Gould, G. W. (2001). SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci USA 98, 5619–24.PubMedCrossRefGoogle Scholar
  20. Chanat, E. and Huttner, W. (1991). Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115, 1505–19.PubMedCrossRefGoogle Scholar
  21. Chanat, E., Weiss, U., Huttner, W. and Tooze, S. (1993). Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathways. Embo 112, 2159–68.Google Scholar
  22. Chang, A. and Jamieson, J. D. (1986). Stimulus-secretion coupling in the developing exocrine pancreas: secretory responsiveness to cholecystokinin. J Cell Biol 103, 2353–65.PubMedCrossRefGoogle Scholar
  23. Chen, C. Y., Cronshagen, U. and Kern, H. F. (1997). A novel pancreas-specific serpin (ZG-46p) localizes to the soluble and membrane fraction of the Golgi complex and the zymogen granules of acinar cells. Eur J Cell Biol 73, 205–214.PubMedCrossRefGoogle Scholar
  24. Chuang, J. Z. and Sung, C. H. (1998). The cytoplasmic tail of rhodopsin acts as a novel apical sorting signal in polarized MDCK cells. J Cell Biol 142, 1245–56.PubMedCrossRefGoogle Scholar
  25. Colomer, V., Kicska, G. A. and Rindler, M. J. (1996). Secretory granule content proteins and the luminal domains of granule membrane proteins aggregate in vitro at mildly acidic pH. J Biol Chem 271, 48–55.PubMedCrossRefGoogle Scholar
  26. Colomer, V, Lal, K., Hoops, T. C. and Rindler, M. J. (1994). Exocrine granule specific packaging signals are present in the polypeptide moiety of the pancreatic granule membrane protein GP2 and in amylase: implications for protein targeting to secretory granules. Embo J 13, 3711–9.PubMedGoogle Scholar
  27. Cool, D. R., Fenger, M., Snell, C. R. and Loh, Y. P. (1995). Identification of the sorting signal motif within pro-opiomelanocortin for the regulated secretory pathway. J Biol Chem 270, 8723–9.PubMedCrossRefGoogle Scholar
  28. Cool, D. R., Normant, E., Shen, E S., Chen, H. C., Pannell, L., Zhang, Y. and Loh, Y. P. (1997). Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in CPE(fat) mice. Cell 88, 73–83.Google Scholar
  29. Creemers, J. W, Usac, E. F., Bright, N. A., Van de Loo, J. W, Jansen, E., Van de Ven, W. J. and Hutton, J. C. (1996). Identification of a transferable sorting domain for the regulated pathway in the prohormone convertase PC2. J Biol Chem 271, 25284–91.PubMedCrossRefGoogle Scholar
  30. Cronshagen, U., Voland, P. and Kern, H. E (1994). cDNA cloning and characterization of a novel 16 kDa protein located in zymogen granules of rat pancreas and goblet cells of the gut. Eur J Cell Biol 65, 366–77.Google Scholar
  31. Dartsch, H., Kleene, R. and Kern, H. E (1998). In vitro condensation-sorting of enzyme proteins isolated from rat pancreatic acinar cells. Eur J Cell Biol 75, 211–22.PubMedCrossRefGoogle Scholar
  32. Davis, A. E, Bai, J., Fasshauer, D., Wolowick, M. J., Lewis, J. L. and Chapman, E. R. (1999). Kinetics of synaptotagmin responses to Cat+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363–76.PubMedCrossRefGoogle Scholar
  33. De Bie, I., Marcinkiewicz, M., Malide, D., Lazure, C., Nakayama, K., Bendayan, M. and Seidah, N. G. (1996). The isoforms of proprotein convertase PC5 are sorted to different subcellular compartments. J Cell Biol 135, 1261–75.PubMedCrossRefGoogle Scholar
  34. De Lisle, R. C. (1994). Characterization of the major sulfated protein of mouse pancreatic acinar cells: a high molecular weight peripheral membrane glycoprotein of zymogen granules. J Cell Biochem 56, 385–96.PubMedCrossRefGoogle Scholar
  35. De Lisle, R. C. (2002). Role of sulfated 0-linked glycoproteins in zymogen granule formation. J Cell Sci 115, 2941–52.Google Scholar
  36. De Lisle, R. C. and Ziemer, D. (2000). Processing of pro-Muclin and divergent trafficking of its products to zymogen granules and the apical plasma membrane of pancreatic acinar cells. Eur J Cell Biol 79, 892–904.PubMedCrossRefGoogle Scholar
  37. Dhanvantari, S., Arnaoutova, I., Snell, C. R., Steinbach, P. J., Hammond, K., Caputo, G. A., London, E. and Loh, Y. P. (2002). Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry 41, 52–60.PubMedCrossRefGoogle Scholar
  38. Dhanvantari, S. and Loh, Y. P. (2000). Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. J Biol Chem 275, 29887–93.Google Scholar
  39. Disdier, M., Morrissey, J. H., Fugate, R. D., Bainton, D. E. and McEver, R. P. (1992). Cytoplasmic domain of P-selectin (CD62) contains the signal for sorting into the regulated secretory pathway. Mol Biol Cell 3, 309–21.PubMedGoogle Scholar
  40. Dittie, A. and Kern, H. E (1992). The major zymogen granule membrane protein GP-2 in the rat pancreas is not involved in granule formation. Eur J Cell Biol 58, 243–58.PubMedGoogle Scholar
  41. Eaton, B. A., Haugwitz, M., Lau, D. and Moore, H. P. (2000). Biogenesis of regulated exo-cytotic carriers in neuroendocrine cells. J Neurosci 20, 7334–44.PubMedGoogle Scholar
  42. Edwardson, J. M., An, S. and Jahn, R. (1997). The secretory granule protein syncollin binds to syntaxin in a Ca2(+)- sensitive manner. Cell 90, 325–33.PubMedCrossRefGoogle Scholar
  43. Fiedler, K., Parton, R. G., Kellner, R., Etzold, T. and Simons, K. (1994). VIP36, a novel compo-nent of glycolipid rafts and exocytic carrier vesicles in epithelial cells. Embo J 13, 1729–40.PubMedGoogle Scholar
  44. Fiedler, K. and Simons, K. (1995). The role of N-glycans in the secretory pathway. Cell 81, 309–12.PubMedCrossRefGoogle Scholar
  45. Forsberg, E. and Kjellen, L. (2001). Heparan sulfate: lessons from knockout mice. J Clin Invest 108, 175–80.PubMedGoogle Scholar
  46. Forsberg, E., Pejler, G., Ringvall, M., Lunderius, C., Tomasini-Johansson, B., KuscheGullberg, M., Eriksson, I., Ledin, J., Hellman, L. and Kjellen, L. (1999). Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–6.PubMedCrossRefGoogle Scholar
  47. Freedman, S. and Scheele, G. (1993a). Reversible pH-induced homophilic binding of GP2, a glycosyl-phosphatidylinositol-anchored protein in pancreatic zymogen granule membranes. Eur J Cell Biol 61, 229–38.PubMedGoogle Scholar
  48. Freedman, S. D., Katz, M. H., Parker, E. M. and Gelrud, A. (1999). Endocytosis at the apical plasma membrane of pancreatic acinar cells is regulated by tyrosine kinases. Am J Physiol 276, C306–11.PubMedGoogle Scholar
  49. Freedman, S. D., Kern, H. E and Scheele, G. A. (1998a). Acinar lumen pH regulates endocytosis, but not exocytosis, at the apical plasma membrane of pancreatic acinar cells. Eur J Cell Biol 75, 153–62.PubMedCrossRefGoogle Scholar
  50. Freedman, S. D., Kern, H. E. and Scheele, G. A. (1998b). Cleavage of GPI-anchored proteins from the plasma membrane activates apical endocytosis in pancreatic acinar cells. Eur J Cell Biol 75, 163–73.PubMedCrossRefGoogle Scholar
  51. Freedman, S. D. and Scheele, G. A. (1993b). Regulated secretory proteins in the exocrine pancreas aggregate under conditions that mimic the trans-Golgi network. Biochem. Biophys Res Commun 197, 992–9.Google Scholar
  52. Freedman, S. D. and Scheele, G. A. (1994). Acid-base interactions during exocrine pancreatic secretion. Primary role for ductal bicarbonate in acinar lumen function. Ann NYAcad Sci 713, 199–206.Google Scholar
  53. Fricker, L. D., Das, B. and Angeletti, R. H. (1990). Identification of the pH-dependent membrane anchor of carboxypeptidase E (EC 3.4.17.10). J Biol Chem 265, 2476–82.Google Scholar
  54. Fukuoka, S., Freedman, S. D. and Scheele, G. A. (1991). A single gene encodes membrane-bound and free forms of GP-2, the major glycoprotein in pancreatic secretory (zymogen) granule membranes. Proc NatlAcad Sci USA 88, 2898–902.CrossRefGoogle Scholar
  55. Fukuoka, S., Freedman, S. D., Yu, H., Sukhatme, V. P. and Scheele, G. A. (1992). GP-2/THP gene family encodes self-binding glycosylphosphatidylinositol-anchored proteins in apical secretory compartments of pancreas and kidney. Proc Natl Acad Sci USA 89, 1189–93.PubMedCrossRefGoogle Scholar
  56. Gaisano, H. Y., Ghai, M., Malkus, P. N., Sheu, L., Bouquillon, A., Bennett, M. K. and Trimble, W. S. (1996a). Distinct cellular locations of the syntaxin family of proteins in rat pancreatic acinar cells. Mol Biol Cell 7, 2019–27.PubMedGoogle Scholar
  57. Gaisano, H. Y., Sheu, L., Foskett, J. K. and Trimble, W. S. (1994). Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J Biol Chem 269, 17062–6.Google Scholar
  58. Gaisano, H. Y., Sheu, L., Grondin, G., Ghai, M., Bouquillon, A., Lowe, A., Beaudoin, A. and Trimble, W. S. (1996b). The vesicle-associated membrane protein family of proteins in rat pancreatic and parotid acinar cells. Gastroenterology 111, 1661–9.PubMedCrossRefGoogle Scholar
  59. Gallagher, J. T. (1989). The extended family of proteoglycans: social residents of the pericellular zone. Curr Opin Cell Biol 1, 1201–18.PubMedCrossRefGoogle Scholar
  60. Gallagher, J. T., Lyon, M. and Steward, W P. (1986). Structure and function of heparan sulphate proteoglycans. Biochem J 236, 313–25.Google Scholar
  61. Geisse, N. A., Wasle, B., Saslowsky, D. E., Henderson, R. M. and Edwardson, J. M. (2002). Syncollìn homo-oligomers associate with lipid bilayers in the form of doughnut-shaped structures. J Membr Bio1 189, 83–92.Google Scholar
  62. Gerona, R. R., Larsen, E. C., Kowalchyk, J. A. and Martin, T. F. (2000). The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J Biol Chem 275, 6328–36.CrossRefGoogle Scholar
  63. Glombik, M. M. and Gerdes, H. H. (2000). Signal-mediated sorting of neuropeptides and prohormones: secretory granule biogenesis revisited. Biochimie 82, 315–26.PubMedCrossRefGoogle Scholar
  64. Glombik, M. M., Kromer, A., Salm, T., Huttner, W. B. and Gerdes, H. H. (1999). The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. Embo 118, 1059–70.Google Scholar
  65. Goncz, K. K. and Rothman, S. S. (1992). Protein flux across the membrane of single secretion granules. Biochim BiophysActa 1109, 7–16.Google Scholar
  66. Goncz, K. K. and Rothman, S. S. (1995). A trans-membrane pore can account for protein movement across zymogen granule membranes. Biochim BiophysActa 1238, 91–3.Google Scholar
  67. Grimes, M. and Kelly, R. B. (1992). Intermediates in the constitutive and regulated secretory pathways released in vitro from semi-intact cells. J Cell Bio1 117, 539–49.Google Scholar
  68. Grondin, G., St-Jean, P. and Beaudoin, A. R. (1992). Cytochemical and immunocytochemical characterization of a fibrillar network (GP2) in pancreatic juice: possible role as a sieve in the pancreatic ductal system. Eur J Cell Biol 57, 155–64.PubMedGoogle Scholar
  69. Hansen, L. J., Reddy, M.K., Reddy, J.K. (1983). Comparison of secretory protein and membrane composition of secretory granules isolated from normal and neoplastic pancreatic acinar cells of rats. Proc NatlAcad Sci USA 80, 4379–83.CrossRefGoogle Scholar
  70. Hansen, N. J., Antonin, W. and Edwardson, J. M. (1999). Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell. J Biol Chem 274, 22871–6.PubMedCrossRefGoogle Scholar
  71. Harder, T. and Simons, K. (1997). Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 9, 534–42.PubMedCrossRefGoogle Scholar
  72. Hodel, A., An, S. J., Hansen, N. J., Lawrence, J., Wasle, B., Schrader, M. and Edwardson, J. M. (2001). Cholesterol-dependent interaction of syncollin with the membrane of the pancreatic zymogen granule. Biochem J 356, 843–50.CrossRefGoogle Scholar
  73. Hodel, A. and Edwardson, J. M. (2000). Targeting of the zymogen-granule protein syncollin in AR42J and AtT-20 cells. Biochem J 350, 637–43.PubMedCrossRefGoogle Scholar
  74. Holmskov, U., Lawson, E, Teisner, B., Tornoe, I., Willis, A. C., Morgan, C., Koch, C. and Reid, K. B. (1997). Isolation and characterization of a new member of the scavenger receptor superfamily, glycoprotein-340 (gp-340), as a lung surfactant protein-D binding molecule. J Biol Chem 272, 13743–9.CrossRefGoogle Scholar
  75. Hoops, T. C., Ivanov, I., Cui, Z., Colomer-Gould, V and Rindler, M. J. (1993). Incorporation of the pancreatic membrane protein GP-2 into secretory granules in exocrine but not endocrine cells. J Biol Chem 268, 25694–705.Google Scholar
  76. Hoops, T. C. and Rindler, M. J. (1991). Isolation of the cDNA encoding glycoprotein-2 (GP-2), the major zymogen granule membrane protein. Homology to uromodulin/TammHorsfall protein. J Biol Chem 266, 4257–63.Google Scholar
  77. Huang, C., Sali, A. and Stevens, R. L. (1998). Regulation and function of mast cell proteases in inflammation. J Clin Immunol 18, 169–83.CrossRefGoogle Scholar
  78. Humphries, D. E., Wong, G. W, Friend, D. S., Gurish, M. E, Qiu, W. T., Huang, C., Sharpe, A. H. and Stevens, R. L. (1999a). Heparin is essential for the storage of specific granule pro-teases in mast cells. Nature 400, 769–72.PubMedCrossRefGoogle Scholar
  79. Humphries, D. E., Wong, G. W, Friend, D. S., Gurish, M. E. and Stevens, R. L. (1999b). 14 Heparin-null Transgenic Mice are Unable to Store Certain Granule Proteases in Their Mast Cells. J Histochem Cytochem 47, 1645D - 1646.Google Scholar
  80. Huttner, W. B., Gerdes, H. H. and Rosa, P. (1991). The granin (chromogranmlsecretogranin) family. Trends Biochem Sci 126, 27–30.CrossRefGoogle Scholar
  81. Huttner, W. B. and Natori, S. (1995). Regulated secretion. Helper proteins for neuroendocrine secretion. Curr Biol 5, 242–5.PubMedCrossRefGoogle Scholar
  82. Huttner, W. B. and Zimmerberg, J. (2001). Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol 13, 478–84.PubMedCrossRefGoogle Scholar
  83. Ikonen, E. (2001). Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13, 470–7.PubMedCrossRefGoogle Scholar
  84. Ikonen, E. and Simons, K. (1998). Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells. Semin Cell Dev Biol 9, 503–9.PubMedCrossRefGoogle Scholar
  85. Imai, A., Nashida, T. and Shimomura, H. (2001). mRNA expression of membrane-fusionrelated proteins in rat parotid gland. Arch Oral Biol 46, 955–62.Google Scholar
  86. Irminger, J. C., Verchere, C. B., Meyer, K. and Halban, P. A. (1997). Proinsulin targeting to the regulated pathway is not impaired in carboxypeptidase E-deficient Cpefat/Cpefat mice. J Biol Chem 272, 27532–4.PubMedCrossRefGoogle Scholar
  87. Iwanij, V. and Jamieson, J. D. (1982). Biochemical analysis of secretory proteins synthesized by normal rat pancreas and by pancreatic acinar tumor cells. J Cell Biol 95, 734–41.PubMedCrossRefGoogle Scholar
  88. Jacob, M., Laine, J. and LeBel, D. (1992). Specific interactions of pancreatic amylase at acidic pH. Amylase and the major protein of the zymogen granule membrane (GP-2) bind to immobilized or polymerized amylase. Biochem Cell Biol 70, 1105–14.PubMedCrossRefGoogle Scholar
  89. Jahn, R. and Sudhof, T. C. (1999). Membrane fusion and exocytosis. Annu Rev Biochem 68, 863–911.PubMedCrossRefGoogle Scholar
  90. Kalus, I., Hodel, A., Koch, A., Kleene, R., Michael Edwardson, J. and Schrader, M. (2002). Interaction of syncollin with GP-2, the major membrane protein of pancreatic zymogen granules, and association with lipid microdomains. Biochem J 362, 433–42.PubMedCrossRefGoogle Scholar
  91. Kim, T., Tao-Cheng, J. H., Eiden, L. E. and Loh, Y. P. (2001). Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106, 499–509.PubMedCrossRefGoogle Scholar
  92. Kleene, R., Classen, B., Zdzieblo, J. and Schrader, M. (2000). SH3 binding sites of ZG29p mediate an interaction with amylase and are involved in condensation-sorting in the exocrine rat pancreas. Biochemistry 39, 9893–900.PubMedCrossRefGoogle Scholar
  93. Kleene, R., Dartsch, H. and Kern, H. E (1999a). The secretory lectin ZG16p mediates sorting of enzyme proteins to the zymogen granule membrane in pancreatic acinar cells. European Journal of Cell Biology 78, 79–90.PubMedCrossRefGoogle Scholar
  94. Kleene, R., Kastner, B., Rosser, R. and Kern, H. (1999b). Complex formation among rat pancreatic secretory proteins under mild alkaline pH conditions. Digestion 60, 305–13.PubMedCrossRefGoogle Scholar
  95. Kleene, R., Zdzieblo, J., Wege, K. and Kern, H. E (1999c). A novel zymogen granule protein (ZG29p) and the nuclear protein MTA1p are differentially expressed by alternative transcription initiation in pancreatic acinar cells of the rat. J Cell Sci 112, 2539–48.PubMedGoogle Scholar
  96. Klumperman, J., Kuliawat, R., Griffith, J. M., Geuze, H. J. and Aryan, P. (1998). Mannose 6-phosphate receptors are sorted from immature secretory granules via adaptor protein AP-1, clathrin, and syntaxin 6-positive vesicles. J Cell Biol 141, 359–71.PubMedCrossRefGoogle Scholar
  97. Koedam, J. A., Cramer, E. M., Briend, E., Furie, B., Furie, B. C. and Wagner, D. D. (1992). P-selectin, a granule membrane protein of platelets and endothelial cells, follows the regulated secretory pathway in AtT-20 cells. J Cell Biol 116, 617–25.PubMedCrossRefGoogle Scholar
  98. Kolhekar, A. S., Mains, R. E. and Eipper, B. A. (1997). Peptidylglycine alpha-amidating monooxygenase: an ascorbate-requiring enzyme. Methods Enzymol 279, 35–43.PubMedCrossRefGoogle Scholar
  99. Kolset, S. O. and Gallagher, J. T. (1990). Proteoglycans in haemopoietic cells. Biochim Biophys Acta 1032, 191–211.Google Scholar
  100. Kraemer, J., Schmitz, E and Drenckhahn, D. (1999). Cytoplasmic dynein and dynactin as likely candidates for microtubule-dependent apical targeting of pancreatic zymogen granules. Eur J Cell Biol 78, 265–77.PubMedCrossRefGoogle Scholar
  101. Krämer, A., Glombik, M. M., Buttner, W. B. and Gerdes, H. H. (1998). Essential role of the disulfide-bonded loop of chromogranin B for sorting to secretory granules is revealed by expression of a deletion mutant in the absence of endogenous granin synthesis. J Cell Biol 140, 1331–46.CrossRefGoogle Scholar
  102. Kundu, A., Avalos, R. T., Sanderson, C. M. and Nayak, D. P. (1996). Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J Virol 70, 6508–15.Google Scholar
  103. Laine, J., Pelletier, G., Grondin, G., Peng, M. and LeBel, D. (1996). Development of GP-2 and five zymogens in the fetal and young pig: biochemical and immunocytochemical evidence of an atypical zymogen granule composition in the fetus. J Histochem Cytochem 44, 481–99.PubMedCrossRefGoogle Scholar
  104. Lang, T., Bruns, D., Wenzel, D., Riedel, D., Holroyd, P., Thiele, C. and Jahn, R. (2001). SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. Embo 120, 2202–13.Google Scholar
  105. LeBel, D. and Beattie, M. (1988). The major protein of pancreatic zymogen granule membranes (GP-2) is anchored via covalent bonds to phosphatidylinositol. Biochem Biophys Res Commun 154, 818–23.PubMedCrossRefGoogle Scholar
  106. Leblond, E A., Viau, G., Laine, J. and Lebel, D. (1993). Reconstitution in vitro of the pH-dependent aggregation of pancreatic zymogens en route to the secretory granule: implication of GP-2. Biochem J 291, 289–96.PubMedGoogle Scholar
  107. Li, X. J. and Snyder, S. H. (1995). Molecular cloning of Ebnerin, a von Ebner’s gland protein associated with taste buds. J Biol Chem 270, 17674–9.CrossRefGoogle Scholar
  108. Lin, R. C. and Scheller, R. H. (2000). Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dey Biol 16, 19–49.CrossRefGoogle Scholar
  109. Lin, S., Naim, H. Y., Rodriguez, A. C. and Roth, M. G. (1998). Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. J Cell Biol 142, 51–7.PubMedCrossRefGoogle Scholar
  110. Logsdon, C. D., Moessner, J., Williams, J A and Goldfine, I. D. (1985). Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells. J Cell Biol 100, 1200–8.PubMedCrossRefGoogle Scholar
  111. Lutzelschwab, C., Pejler, G., Aveskogh, M. and Hellman, L. (1997). Secretory granule pro-teases in rat mast cells. Cloning of 10 different serine proteases and a carboxypeptidase A from various rat mast cell populations. J Exp Med 185, 13–29.PubMedCrossRefGoogle Scholar
  112. Madore, N., Smith, K. L., Graham, C. H., Jen, A., Brady, K., Hall, S. and Morris, R. (1999). Functionally different GPI proteins are organized in different domains on the neuronal surface. Embo J 18, 6917–26.PubMedCrossRefGoogle Scholar
  113. Martin-Belmonte, F., Alonso, M. A., Zhang, X. and Aryan, P. (2000). Thyroglobulin is selected as luminal protein cargo for apical transport via detergent-resistant membranes in epithelial cells. J Biol Chem 275, 41074–81.CrossRefGoogle Scholar
  114. Matsumoto, R., Sali, A., Ghildyal, N., Karplus, M. and Stevens, R. L. (1995). Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells. A cluster of histidines on mouse mast cell protease 7 regulates its binding to heparin serglycin proteoglycans. J Biol Chem 270, 19524–31.CrossRefGoogle Scholar
  115. Meldolesi, J., Jamieson, J. D. and Palade, G. E. (1971). Composition of cellular membranes in the pancreas of the guinea pig. II. Lipids. J Cell Biol 49, 130–49.Google Scholar
  116. Milgram, S. L., Kho, S. T., Martin, G. V., Mains, R. E. and Eipper, B. A. (1997). Localization of integral membrane peptidylglycine alpha-amidating monooxygenase in neuroendocrine cells. J Cell Sci 110, 695–706.PubMedGoogle Scholar
  117. Mitra, A., Song, L. and Fricker, L. D. (1994). The C-terminal region of carboxypeptidase E is involved in membrane binding and intracellular routing in AtT-20 cells. J Biol Chem 269, 19876–81.Google Scholar
  118. Normant, E. and Loh, Y. P. (1998). Depletion of carboxypeptidase E, a regulated secretory pathway sorting receptor, causes misrouting and constitutive secretion of proinsulin and proenkephalin, but not chromogranin A. Endocrinology 139, 2137–45.PubMedCrossRefGoogle Scholar
  119. Ohnishi, H., Ernst, S. A., Wys, N., McNiven, M. and Williams, J. A. (1996). Rab3D localizes to zymogen granules in rat pancreatic acini and other exocrine glands. Am J Physiol 271, G531–8.Google Scholar
  120. Ohnishi, H., Mine, T., Shibata, H., Ueda, N., Tsuchida, T. and Fujita, T. (1999). Involvement of Rab4 in regulated exocytosis of rat pancreatic acini. Gastroenterology 116, 943–52.PubMedCrossRefGoogle Scholar
  121. Ozawa, H. and Takata, K. (1995). The granin family — its role in sorting and secretory granule formation. Cell Struct Funct 20, 415–20.PubMedCrossRefGoogle Scholar
  122. Palade, G. E. (1975). Intracellular aspects in the process of protein secretion. Science 189, 347–58.PubMedCrossRefGoogle Scholar
  123. Palmer, D. J. and Christie, D. L. (1992). Identification of molecular aggregates containing glycoproteins III, J, K (carboxypeptidase H), and H (Kex2-related proteases) in the soluble and membrane fractions of adrenal medullary chromaffin granules. J Biol Chem 267, 19806–12.Google Scholar
  124. Parker, E. M., Zaman, M. M. and Freedman, S. D. (2000). GP2, a GPI-anchored protein in the apical plasma membrane of the pancreatic acinar cell, co-immunoprecipitates with src kinases and caveolin. Pancreas 21, 219–25.PubMedCrossRefGoogle Scholar
  125. Pimplikar, S. W. and Huttner, W. B. (1992). Chromogranin B (secretogranin I), a secretory protein of the regulated pathway, is also present in a tightly membrane-associated form in PC12 cells. J Biol Chem 267, 4110–8.Google Scholar
  126. Prydz, K. and Dalen, K. T. (2000). Synthesis and sorting of proteoglycans. J Cell Sci 113, 193–205.PubMedGoogle Scholar
  127. Reggio, H. A. and Palade, G. E. (1978). Sulfated compounds in the zymogen granules of the guinea pig pancreas. J Cell Biol 77, 288–314.PubMedCrossRefGoogle Scholar
  128. Riedel, D., Antonin, W, Fernandez-Chacon, R., Alvarez de Toledo, G., Jo, T., Geppert, M., Valentijn, J. A., Valentijn, K., Jamieson, J. D., Sudhof, T. C. et al. (2002). Rab3D is not required for exocrine exocytosis but for maintenance of normally sized secretory granules. Mol Cell Biol 22, 6487–97.PubMedCrossRefGoogle Scholar
  129. Rindler, M. J. (1998). Carboxypeptidase E, a peripheral membrane protein implicated in the targeting of hormones to secretory granules, co-aggregates with granule content proteins at acidic pH. J Biol Chem 273, 31180–5.PubMedCrossRefGoogle Scholar
  130. Rodgers, W, Crise, B. and Rose, J. K. (1994). Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol 14, 5384–91.PubMedGoogle Scholar
  131. Rodriguez-Boulan, E. and Gonzalez, A. (1999). Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol 9, 291–4.PubMedCrossRefGoogle Scholar
  132. Ronzio, R. A., Kornquist, K. E., Douglas, S. L., MacDonald, R. J., Mohrlock, S. H. and O’Donell, J. J. (1978). Glycoprotein synthesis in the adult rat pancreas. IV. Subcellular distribution of membrane glycoproteins. Biochim BiophysActa 508, 65–84.Google Scholar
  133. Röper, K., Corbeil, D. and Huttner, W. B. (2000). Retention of protuinin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2, 582–92.PubMedCrossRefGoogle Scholar
  134. Rudolf, R., Salm, T., Rustom, A. and Gerdes, H. H. (2001). Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actindependent tethering. Mol Biol Cell 12, 1353–65.PubMedGoogle Scholar
  135. Sargiacomo, M., Sudol, M., Tang, Z. and Lisanti, M. P. (1993). Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122, 789–807.PubMedCrossRefGoogle Scholar
  136. Scheele, G. and Kern, H. E. (1993). Cellular compartmentation, protein processing, and secretion in the exocrine pancreas. In The pancreas: biology, pathobiology and disease, (ed. V. L. W. Go ), pp. 121–150. New York: Raven Press.Google Scholar
  137. Scheele, G. A., Fukuoka, S. and Freedman, S. D. (1994). Role of the GP2/THP family of GPI-anchored proteins in membrane trafficking during regulated exocrine secretion. Pancreas 9, 139–49.PubMedCrossRefGoogle Scholar
  138. Scheele, G. A., Palade, G. E. and Tartakoff, A. M. (1978). Cell fractionation studies on the guinea pig pancreas. Redistribution of exocrine proteins during tissue homogenization. J Cell Biol 78, 110–30.Google Scholar
  139. Schmidt, K., Dartsch, H., Linder, D., Kern, H. and Kleene, R. (2000). A submembranous matrix of proteoglycans on zymogen granule membranes is involved in granule formation in rat pancreatic acinar cells. J Cell Sci 113, 2233–42.PubMedGoogle Scholar
  140. Schmidt, K., Schrader, M., Kern, H. E and Kleene, R. (2001). Regulated apical secretion of zymogens in rat pancreas: Involvement of the GPI-anchored glycoprotein GP-2, the lectin ZG16p and cholesterol-glycosphingolipid enriched microdomains. J Biol Chem 10, 10.Google Scholar
  141. Scranton, T. W, Iwata, M. and Carlson, S. S. (1993). The SV2 protein of synaptic vesicles is a keratan sulfate proteoglycan. J Neurochem 61, 29–44.CrossRefGoogle Scholar
  142. Simons, K. and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569–72.PubMedCrossRefGoogle Scholar
  143. Stefanova, I., Horejsi, V, Ansotegui, I. J., Knapp, W. and Stockinger, H. (1991). GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254, 1016–9.PubMedCrossRefGoogle Scholar
  144. Stoller, T. J. and Shields, D. (1989). The propeptide of preprosomatostalin mediates intracellular transport and secretion of alpha-globin from mammalian cells. J Cell Bio1 108, 1647–55.Google Scholar
  145. Sun, A. Q., Ananthanarayanan, M., Soroka, C. J., Thevananther, S., Shneider, B. L. and Suchy, F. J. (1998). Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells. Am J Physiol 275, G1045–55.Google Scholar
  146. Tan, S. and Hooi, S. C. (2000). Syncollin is differentially expressed in rat proximal small intestine and regulated by feeding behavior. Am J Physiol Gastrointest Liver Physiol 278, G308–20.Google Scholar
  147. Tartakoff, A. M., Jamieson, J. D., Scheele, G. A. and Palade, G. E. (1975). Studies on the pancreas of the guinea pig. Parallel processing and discharge of exocrine proteins. J Biol Chem 250, 2671–7.Google Scholar
  148. Thevenod, E (2002). Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am JPhysiol Cell Physiol 283, C651–72.Google Scholar
  149. Thiele, C., Gerdes, H. H. and Huttner, W B. (1997). Protein secretion: pn77ling receptors. Curr Biol 7, R496–500.PubMedCrossRefGoogle Scholar
  150. Thiele, C. and Huttner, W. B. (1998a). The disulfide-bonded loop of chromogranins, which is essential for sorting to secretory granules, mediates homodimerization. J Biol Chem 273, 1223–31.PubMedCrossRefGoogle Scholar
  151. Thiele, C. and Huttner, W. B. (1998b). Protein and lipid sorting from the trans-Golgi network to secretory granules-recent developments. Semin Cell Dey Biol 9, 511–6.CrossRefGoogle Scholar
  152. Tooze, J., Kern, H. F., Fuller, S. D. and Howell, K. E. (1989). Condensation-sorting events in the rough endoplasmic reticulum of exocrine pancreatic cells. J Cell Biol 109, 35–50.PubMedCrossRefGoogle Scholar
  153. Tooze, S. A. (1998). Biogenesis of secretory granules in the trans-Golgi network of neuroen-docrine and endocrine cells. Biochim BiophysActa 1404, 231–44.Google Scholar
  154. Tooze, S. A., Martens, G. J. M. and Huttner, W B. (2001). Secretory granule biogenesis: rafting to the SNARE. Trends in Cell Biology 11, 116–122.PubMedCrossRefGoogle Scholar
  155. Ueda, N., Ohnishi, H., Kanamaru, C., Suzuki, J., Tsuchida, T., Mashima, H., Yasuda, H. and Fujita, T. (2000). Kinesin is involved in regulation of rat pancreatic amylase secretion. Gastroenterology 119, 1123–31.PubMedCrossRefGoogle Scholar
  156. Valentijn, J. A., Valentijn, K., Pastore, L. M. and Jamieson, J. D. (2000). Actin coating of secretory granules during regulated exocytosis correlates with the release of rab3D. Proc Natl Acad Sci USA 97, 1091–5.PubMedCrossRefGoogle Scholar
  157. Varlamov, O., Fricker, L. D., Furukawa, H., Steiner, D. E, Langley, S. H. and Leiter, E. H. (1997). Beta-cell lines derived from transgenic Cpe(fat)/Cpe(fat) mice are defective in carboxypeptidase E and proinsulin processing. Endocrinology 138, 4883–92.CrossRefGoogle Scholar
  158. Wagner, A. C., Strowski, M. Z. and Williams, J. A. (1994). Identification of Rab 5 but not Rab 3A in rat pancreatic zymogen granule membranes. Biochem Biophys Res Commun 200, 542–8.PubMedCrossRefGoogle Scholar
  159. Wagner, A. C. and Williams, J. A. (1994). Pancreatic zymogen granule membrane proteins: molecular details begin to emerge. Digestion 55, 191–9.PubMedCrossRefGoogle Scholar
  160. Wang, Y, Thiele, C. and Huttner, W. B. (2000). Cholesterol is required for the formation of regulated and constitutive secretory vesicles from the trans-Golgi network. Traffic 1, 952–62.PubMedCrossRefGoogle Scholar
  161. Wasmeier, C., Bright, N. A. and Hutton, J. C. (2002). The lumenal domain of the integral membrane protein phogrin mediates targeting to secretory granules. Traffic 3, 654–65.PubMedCrossRefGoogle Scholar
  162. Wendler, E, Page, L., Urbe, S. and Tooze, S. A. (2001). Homotypic fusion of immature secretory granules during maturation requires syntaxin 6. Mol Biol Cell 12, 1699–709.PubMedGoogle Scholar
  163. Williams, J. A. (2001). Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 63, 77–97.PubMedCrossRefGoogle Scholar
  164. Yoo, S. H. (1993). pH-dependent binding of chromogranin B and secretory vesicle matrix proteins to the vesicle membrane. Biochim Biophys Acta 1179, 239–46.Google Scholar
  165. Yoo, S. H. (1995). pH- and Ca(2+)-induced conformational change and aggregation of chromogranin B. Comparison with chromogranin A and implication in secretory vesicle biogenesis. J Biol Chem 270, 12578–83.Google Scholar
  166. Yoo, S. H. and Albanesi, J. P. (1990). Ca2(+)-induced conformational change and aggregation of chromogranin A. J Biol Chem 265, 14414–21.PubMedGoogle Scholar
  167. Zhang, C. E, Dhanvantari, S., Lou, H. and Loh, Y. P. (2003). Sorting of carboxypeptidase E to the regulated secretory pathway requires interaction of its transmembrane domain with lipid rafts. Biochem J 369, 453–60.Google Scholar
  168. Zhang, C. E, Snell, C. R. and Loh, Y. P. (1999). Identification of a novel prohormone sorting signal-binding site on carboxypeptidase E, a regulated secretory pathway-sorting receptor. Mol Endocrinol 13, 527–36.PubMedCrossRefGoogle Scholar
  169. Zhou, A., Webb, G., Zhu, X. and Steiner, D. E (1999). Proteolytic processing in the secretory pathway. J Biol Chem 274, 20745–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Michael Schrader
    • 1
  1. 1.Department of Cell Biology and Cell PathologyUniversity of MarburgMarburgGermany

Personalised recommendations