Cellular and Molecular Requirements for B Lymphopoiesis

  • Jeffrey M. Gimble
  • Shin-Ichi Hayashi
  • Carolynn E. Pietrangeli
  • Grace Lee
  • Paul W. Kincade

Abstract

At certain levels, the subject of B lymphocyte differentiation is no longer a mystery. Molecular biological approaches have helped explain the generation of antibody diversity as well as the mechanisms of immunoglobulin gene regulation1. Nevertheless, some areas still remain fruitful for investigation. The bone marrow is the bursal equivalent in adult mammals. This is the site where B lymphocyte differentiation begins from a putatitive multipotent hemopoietic stem cell. With cells of at least eight different hematopoeitic lineages all confined within a calcified matrix, attempts to address the bone marrow as an organ system have been difficult at best. However, recent advances in methodology have provided an experimental system for in vitro modeling of the bone marrow microenvironment. This paper will focus on the recently characterized “stromal” cells which support B lymphopoiesis and their potential relevance to physiologic and pathologic processes.

Keywords

Stromal Cell Neural Cell Adhesion Molecule Phosphatidyl Inositol Immunoglobulin Gene Bone Marrow Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.W. Kincade, Experimental models for understanding B lymphocyte formation, Adv.Immunol 41: 181 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Abramson, R.G. Miller and R.A. Phillips, The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems, J.Exo.Med 145: 1567 (1977).CrossRefGoogle Scholar
  3. 3.
    J.J. Trentin, Determination of bone marrow stem cell differentiation by stromal hemopoietic inductive microenvironments (HIM), Am.J.Pathol 65: 621 (1971).PubMedGoogle Scholar
  4. 4.
    J.L. Curry and J.J. Trentin, Hemopoietic spleen colony studies. I. Growth and differentiation, Dev.Biol 15: 395 (1967).PubMedCrossRefGoogle Scholar
  5. 5.
    L. Weiss, Hematopoietic microenvironment of the bone marrow: An ultrastructural study of the stroma in rats, Anat.Rec 186: 161 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Weiss and H. Sakai, The hematopoietic stroma, Am.J.Anat 170: 447 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    T.D. Allen and T.M. Dexter, Cellular interrelationships during in vitro granulopoiesis, Differentiation 6: 192 (1976).CrossRefGoogle Scholar
  8. 8.
    T.M. Dexter and L.G. Lajtha, Proliferation of hematopoietic stem cells in vitro, Br.J.Haematol 28: 525 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    T.M. Dexter, T.D. Allen and L.G. Lajtha, Conditions controlling the proliferation of haemopoietic stem cells in vitro, J.Cell Phvsiol 91: 335 (1977).Google Scholar
  10. 10.
    C.A. Whitlock, D. Robertson and O.N. Witte, Murine B cell lymphopoiesis in long-term culture, J.Immunol.Methods 67: 353 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    C. Whitlock, K. Denis, D. Robertson and O. Witte, In vitro analysis of murine B-cell development, Ann.Rev.Immunol. 3:213 (1985).CrossRefGoogle Scholar
  12. 12.
    K. Dorshkind, In vitro differentiation of B lymphocytes from primitive hemopoietic precursors present in long-term bone marrow cultures, J.Immunol. 136:422 (1986).PubMedGoogle Scholar
  13. 13.
    A. Johnson and K. Dorshkind, Stromal cells in myeloid and lymphoid long-term bone marrow cultures can support multiple hemopoietic lineages and modulate their production of hemopoietic growth factors, Blood 68: 1348 (1986).PubMedGoogle Scholar
  14. 14.
    L.S. Collins and K. Dorshkind, A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis, J.Immunol 138: 1082 (1987).PubMedGoogle Scholar
  15. 15.
    P. Hunt, D. Robertson, D. Weiss, D. Rennick, F. Lee and O.N. Witte, A single bone marrow-derived stromal cell type supports the in vitro growth of early lymphoid and myeloid cells, Cell 48: 997 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    P.L. Witte, P.D. Burrows, P.W. Kincade and M.D. Cooper, Characterization of B lymphocyte lineage progenitor cells from mice with severe combined immune deficiency disease (SCID) made possible by long term culture, J.Immunol 138: 2698 (1987).PubMedGoogle Scholar
  17. 17.
    S-I. Hayashi, P.L. Witte, L.D. Shultz and P.W. Kincade, Lymphohemopoiesis in culture is prevented by interaction with adherent bone marrow cells from mutant viable motheaten mice, J. Immunol (1988).(In Press)Google Scholar
  18. 18.
    S-I. Hayashi, P.L. Witte and P.W. Kincade, Studies of two genetically defective strains of mice in long term bone marrow culture, Fed.Proc 46: 1348 (1987). (Abstract)Google Scholar
  19. 19.
    G.K. Reid and D.G. Osmond, B lymphocyte production in the bone marrow of mice with X-linked immunodeficiency (xid), J.Immunol 135: 2299 (1985).PubMedGoogle Scholar
  20. 20.
    P.L. Witte, P.W. Kincade and V. Vetvicka, Interculture variation and evolution of B lineage lymphocytes in long-term bone marrow culture, Eur. J. Immunol. 16: 779 (1986).Google Scholar
  21. 21.
    P.L. Witte, M. Robinson, A. Henley, M.G. Low, D.L. Stiers, S. Perkins, R.A. Fleischman and P.W. Kincade, Relationships between B-lineage lymphocytes and stromal cells in long term bone marrow cultures, Eur.J.Immunol 17: 1473 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    C.A. Whitlock, G.F. Tidmarsh, C. Muller-Sieburg and I.L. Weissman, Bone marrow stromal cell lines with lymphopoietic activity express high levels of a pre-B neoplasia-associated molecule, Cell 48: 1009 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Sideras and R. Palacios, Bone marrow pro-T and pro-B lymphocyte clones express functional receptors for interleukin (IL) 3 and IL 4/BSF-1 and nonfunctional receptors for IL 2, Eur.J.Immunol 17: 217 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    G. Lee, L.R. Ellingsworth, S. Gillis, R. Wall and P.W. Kincade, B transforming growth factors are potential regulators of B lymphopoiesis, L Exp. Med. 166: 1290 (1987).CrossRefGoogle Scholar
  25. 25.
    D. Rennick, G. Yang, C. Muller-Sieburg, C. Smith, N. Arai, Y. Takabe and L. Gemmell, Interleukin 4 (B-cell stimulatory factor 1) can enhance or antagonize the factor-dependent growth of hemopoietic progenitor cells, Proc.Natl.Acad.Sci.USA 84: 6889 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    T. Springer, G. Galfre, D.S. Secher and C. Milstein, Monoclonal xenogeneic antibodies to murine cell surface antigens: Identification of novel leukocyte differentiation antigens, Eur.J.Immunol 8: 539 (1978).PubMedCrossRefGoogle Scholar
  27. 27.
    T.A. Springer, Monoclonal antibody analysis of complex biological systems, J.Biol.Chem 256: 3833 (1981).PubMedGoogle Scholar
  28. 28.
    H-T. He, J. Barbet, J-C. Chaix and C. Goridis, Phosphatidylinositol is involved in the membrane attachment of NCAM-120, the smallest component of the neural cell adhesion molecule, EMBO 5: 2489 (1986).Google Scholar
  29. 29.
    M.G. Low, Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors, Biochem.J 244: 1 (1987).PubMedGoogle Scholar
  30. 30.
    M.G. Low and A.R. Saltiel, Structural and functional roles of glycosyl-phosphatidylinositol in membranes, Science (1988).(In Press)Google Scholar
  31. 31.
    M.G. Low, J. Stiernberg, G.L. Waneck, R.A. Flavell and P.W. Kincade, Cell based heterogeneity in sensitivity of phosphatidylinositol linked membrane antigens to release by phospholipase C, (1988).( UnPub )Google Scholar
  32. 32.
    G.C. Owens, G.M. Edelman and B.A. Cunningham, Organization of the neural cell adhesion molecule (N-CAM) gene: Alternative exon usage as the basis for different membrane-associated domains, Proc.Natl.Acad.Sci.USA 84: 294 (1987).CrossRefGoogle Scholar
  33. 33.
    G. Gennarini, M-R. Hirsch, H-T. He, M. Hirn, J. Finne and C. Goridis, Differential expression of mouse neural cell adhesion molecule (N-CAM) mRNA species during brain development and in neural cell lines, J.Neuroscience 6: 1983 (1986).Google Scholar
  34. 34.
    S.E. Moore, J. Thompson, V. Kirkness, J.G. Dickson and F.S. Walsh, Skeletal muscle neural cell adhesion molecule (N-CAM): Changes in protein and mRNA species during myogenesis of muscle cell lines, L Cell Biol. 105: 1377 (1987).CrossRefGoogle Scholar
  35. 35.
    G. Dickson, H.J. Gower, C.H. Barton, H.M. Prentice, V.L. Elsom, S.E. Moore, R.D. Cox, C. Quinn, W. Putt and F.S. Walsh, Human muscle neural cell adhesion molecule (N-CAM): Identification of a muscle-specific sequence in the extracellular domain, Cell 50: 1119 (1987).PubMedCrossRefGoogle Scholar
  36. 36.
    C. Goridis, M. Hirn, M-J. Santoni, G. Gennarini, H. Deagostini-Bazin, B.R. Jordan, M. Kiefer and M. Steinmetz, Isolation of mouse N-CAM-related cDNA: detection and cloning using monoclonal antibodies, EMBO 4: 631 (1985).Google Scholar
  37. 37.
    B.A. Murray, J.J. Hemperly, E.A. Prediger, G.M. Edelman and B.A. Cunningham, Alternatively spliced mRNAs code for different polypeptide chains of the chicken neural cell adhesion molecule (N-CAM), J. Cell Biol. 102: 189 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    P.S. Thomas, C.E. Pietrangeli, S-I. Hayashi, M. Schachner, C. Goridis, M.G. Low and P.W. Kincade, Demonstration of neural cell adhesion molecules on stromal cells which support lymphopoiesis, Leukemia (1988).(In Press)Google Scholar
  39. 39.
    B.A. Cunningham, J.J. Hemperly, B.A. Murray, E.A. Prediger, R. Brackenbury and G.M. Edelman, Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing, Science 236: 799 (1987).PubMedCrossRefGoogle Scholar
  40. 40.
    L. Hood, M. Kronenberg and T. Hunkapiller, T cell antigen receptors and the immunoglobulin supergene family, Cell 40: 225 (1985).PubMedCrossRefGoogle Scholar
  41. 41.
    A.F. Williams, A year in the life of the immunoglobulin superfamily, Immunol. Today 8: 298 (1987).CrossRefGoogle Scholar
  42. 42.
    N. Hozumi and S. Tonegawa, Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions, Proc.Natl.Acad.Sci.USA 73: 3628 (1976).PubMedCrossRefGoogle Scholar
  43. 43.
    J.G. Seidman and P. Leder, The arrangement and rearrangement of antibody genes, Nature 276: 790 (1978).PubMedCrossRefGoogle Scholar
  44. 44.
    R. Grosschedl and D. Baltimore, Cell-type specificity of immunoglobulin gene expression is regulated by at least three DNA sequence elements, Cell 41: 885 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    L. Emorine, M. Kuehl, L. Weir, P. Leder and E.E. Max, A conserved sequence in the immunoglobulin JK-CK intron: possible enhancer element, Nature 304: 447 (1983).PubMedCrossRefGoogle Scholar
  46. 46.
    C. Queen and D. Baltimore, Immunoglobulin gene transcription is activated by downstream sequence elements, Cell 33: 741 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    C. Queen and J. Stafford, Fine mapping of an immunoglobulin gene activator, Mol. Cell. Biol. 4: 1042 (1984).Google Scholar
  48. 48.
    K. Hirayosh, S-I. Nishikawa, T. Kina, M. Hatanaka, S. Habu, T. Nomura and Y. Katsura, Immunoglobulin heavy chain gene diversification in the long-term bone marrow culture of normal mice and mice with severe combined immunodeficiency, Eur.J.Immunol 17: 1051 (1987).CrossRefGoogle Scholar
  49. 49.
    W.F. Anderson, Prospects for human gene therapy, Science 226: 401 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jeffrey M. Gimble
    • 1
  • Shin-Ichi Hayashi
    • 1
  • Carolynn E. Pietrangeli
    • 1
  • Grace Lee
    • 1
  • Paul W. Kincade
    • 1
  1. 1.Oklahoma Medical Research FoundationOklahoma CityUSA

Personalised recommendations