Electron—Phonon Interaction

  • Gerald D. Mahan
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

The Fröhlich Hamiltonian describes the interaction between a single electron in a solid and LO (longitudinal optical) phonons:
$$H = \sum\limits_{p\sigma } {{\varepsilon _p}} C_{p\sigma }^\dag {C_{p\sigma }} + {\omega _0}\sum\limits_q {a_q^\dag } {a_q} + \sum\limits_{qp\sigma } {\frac{{{M_0}}}{{\sqrt V }}} \;\frac{1}{{\left| q \right|}}C_{p + q,\sigma }^\dag {C_{p\sigma }}({a_q} + a_{ - q}^\dag )$$
$${M_0} = \frac{{4\pi \alpha h{{(h{\omega _0})}^{3/2}}}}{{\sqrt {2m} }},\;{\varepsilon _p} = \frac{{{p^2}}}{{2m}}$$
(7.1)
$$\alpha = \frac{{{e^2}}}{h}{(\frac{m}{{2h{\omega _0}}})^{1/2}}(\frac{1}{{{\varepsilon _\infty }}} - \frac{1}{{{\varepsilon _0}}})$$
(7.2)
This Hamiltonian was derived in Chapter 1, with the form of the interaction given in Sec. 1.3.5. The LO phonons are usually represented by an Einstein model, i.e., the phonon frequency ω0 = ωLO is taken to be a constant. Since there is a single electron, the Hamiltonian may also be written as
$$H = \frac{{{p^2}}}{{2m}} + {\omega _0}\sum\limits_q {a_q^\dag } {a_q} + \sum\limits_q {\frac{{{M_0}}}{{\sqrt v }}} \;\frac{{{e^{iq \cdot r}}}}{{\left| q \right|}}({a_q} + a_{ - q}^\dag )$$
(7.3)

where r and p are the conjugate coordinates of the electron. The unperturbed electron is taken to have free-particle motion with an effective mass m.

Keywords

Fermi Surface Dielectric Function Longitudinal Optical Phonon Diagonal Transition Strong Coupling Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, D., in Solid State Physics. Vol. 21, eds. H. Ehrenreich, E Seitz, and D. Turnbull ( Academic Press, New York, 1967 ), p. 1.Google Scholar
  2. Allcock, G. R., Adv. Phys. 5, 412 (1956).ADSCrossRefGoogle Scholar
  3. Allcock, G. R., in Polarons and Excitons, eds. C. G. Kuper, and G. D. Whitfield ( Oliver and Boyd, Edinburgh, 1962 ), pp. 45–70.Google Scholar
  4. Appel, J., Phys. Rev. Lett. 17, 1045 (1966).ADSCrossRefGoogle Scholar
  5. Appel. J., in Solid State Physics, Vol. 21, eds. H. Ehrenreich, E Seitz, and D. Turnbull ( Academic Press, New York, 1967 ), p. 193.Google Scholar
  6. Ashcroft, N. W, and J. W. Wilkins, Phys. Lett. 14, 285 (1965).ADSGoogle Scholar
  7. Bogomolou V. N., E. K. Kudinov, and Yu. A. Firsov, Soy. Phys. Solid State 9, 2502 (1968).Google Scholar
  8. Bohm, D., and I. Stayer, Phys. Rev. 84, 836 (1951).ADSCrossRefGoogle Scholar
  9. Bottger, H., and V. V. Bryksin, Phys. Status Solidi B 78, 415 (1976).ADSCrossRefGoogle Scholar
  10. Brillouin, L., J. Phys. Paris 3, 379 (1932); 4, 1 (1933).MathSciNetCrossRefGoogle Scholar
  11. Brout, R., and P. Carruthers, Lectures on the Many-Electron Problem ( Wiley-Interscience, New York, 1963 ).Google Scholar
  12. Brown, D. W, K. Lindenberg, and Y. Zhao, J. Chem. Phys. 107, 3159, 3179 (1997).ADSCrossRefGoogle Scholar
  13. Conley, J. W, and G. D. Mahan, Phys. Rev. 161, 681 (1967).ADSCrossRefGoogle Scholar
  14. Dewit, H. J., Philips Res. Rep. 23, 449 (1968).Google Scholar
  15. Dunn, D., Can. J. Phys. 53, 321 (1975).ADSCrossRefGoogle Scholar
  16. Engelsberg, S., and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).ADSCrossRefGoogle Scholar
  17. Feynman, R. P., Phys. Rev. 97, 660 (1955).ADSMATHCrossRefGoogle Scholar
  18. Garrett, D. G., and J. C. Swihart, J. Phys. F 6, 1781 (1976).ADSCrossRefGoogle Scholar
  19. Grimvall, G., The Electron Phonon Interaction in Metals ( North-Holland, New York, 1981 ).Google Scholar
  20. Harrison, W. A., Pseudopotentials in the Theory Of Metals (Benjamin, Reading, Mass., 1966 ).Google Scholar
  21. Hodby, J. W, in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 389–459.Google Scholar
  22. Holstein, T., Annals of Phys. 8, 343 (1959).ADSCrossRefGoogle Scholar
  23. Joshi, S. K., and A. K. Rajagopal, in Solid State Physics, Vol. 22, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press, New York, 1968 ), pp. 160–313.Google Scholar
  24. Kartheuser, E., R. Eyrard, and J. Devreese, Phys. Rev. Lett. 22, 94 (1969).ADSCrossRefGoogle Scholar
  25. Kay, E, and J. A. Reissland, J. Phys. F 6, 1503 (1976).ADSCrossRefGoogle Scholar
  26. Kohn, W, Phys. Rev. Lett. 2, 395 (1959).ADSCrossRefGoogle Scholar
  27. Kudinov, R. K., D. N. Mirlin, and Yu. A. Firsov, Soy. Phys. Solid State 11, 2257 (1970).Google Scholar
  28. Landau, L. D., and S. L. Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946).Google Scholar
  29. Lang, I. G., and Yu. A. Firsov, Soy. Phys. JETP 16, 1301 (1963)ADSGoogle Scholar
  30. Lang, I. G., and Yu. A. Firsov, Soy. Phys. Solid State 5, 2049 (1964)Google Scholar
  31. Low, E, T. D. Lee, and D. Pines, Phys. Rev. 90, 297 (1953).MathSciNetADSMATHCrossRefGoogle Scholar
  32. Lyddane, R. H., R. G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).ADSMATHCrossRefGoogle Scholar
  33. Mahan, G. D., Phys. Rev. 145, 602 (1966).MathSciNetADSCrossRefGoogle Scholar
  34. Mahan, G. D., in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 553–657.Google Scholar
  35. Mcmillan, W. L., Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar
  36. Migdal, A. B., Soy. Phys. JETP 7, 996 (1958).Google Scholar
  37. Miyake, S. J., J. Phys. Soc. Jpn. 41, 745 (1976).ADSCrossRefGoogle Scholar
  38. Mooradian, A., and G. B. Wright, Phys. Rev. Lett. 16, 999 (1966).ADSCrossRefGoogle Scholar
  39. Nagaev, E. L., Soy. Phys. Solid State 4, 1611 (1963).Google Scholar
  40. Nakajima, S., and M. Watabe, Prog. Theor. Phys. 29, 341 (1963).ADSMATHCrossRefGoogle Scholar
  41. Reik, H. G., in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 679–714.Google Scholar
  42. Rowell, J. M., W. L. Mcmillan, and W. L. Feldmann, Phys. Rev. 178, 897 (1969a)ADSCrossRefGoogle Scholar
  43. Rowell, J. M., W. L. Mcmillan, and W. L. Feldmann, Phys. Rev. 180, 658 (1969b)ADSCrossRefGoogle Scholar
  44. Rowell, J. M., W. L. Mcmillan, and W. L. Feldmann, Phys. Rev. B 3, 4065 (1971).ADSCrossRefGoogle Scholar
  45. Schiff, L. I., Quantum Mechanics, 2nd ed. ( McGraw-Hill, New York, 1955 ), p. 199.MATHGoogle Scholar
  46. Schotte, K. D., Z. Phys. 196, 393 (1966).ADSCrossRefGoogle Scholar
  47. Schrieffer, J. R., Theory of Superconductivity (Benjamin, Reading, Mass., 1964 ).Google Scholar
  48. Sham, L. J., and J. M. Ziman, Solid State Phys., Vol. 15, eds. H. Ehrenreich, E Seitz, and D. Turnbull (Academic Press, New York, 1963 ), p. 221.Google Scholar
  49. Shukla, R. C., and R. Taylor, J. Phys. F 6, 531 (1976).ADSCrossRefGoogle Scholar
  50. Smondyrev, M. A., Theor. Math. Phys. (Russian) 68, 653 (1986).Google Scholar
  51. Srivastava, P. L., and R. N. Singh, J. Phys. F 6, 1819 (1976).ADSCrossRefGoogle Scholar
  52. Swihart, J. C., J. Scalapino, and Y. Wada, Phys. Rev. Lett. 14, 106 (1965).ADSCrossRefGoogle Scholar
  53. Tiablikov, S. V., Zh. Eksp. Teor. Fiz. 23, 381 (1952).Google Scholar
  54. Tomlinson, P. G., and J. P. Carbotte, Solid State Commun. 18, 119 (1976).ADSCrossRefGoogle Scholar
  55. Tsui, D. C., Phys. Rev. B 10, 5088 (1974).ADSCrossRefGoogle Scholar
  56. Wigner, E. E, Math. U. Naturw. Anz. Ungar. Akad. Wiss. 53, 477 (1935).Google Scholar
  57. Woll, E. J., and W. Kohn, Phys. Rev. 126,, 1693 (1962).Google Scholar
  58. Yamashita, J., and T. Kurosawa, J. Phys. Chem. Solids 5, 34 (1958).ADSCrossRefGoogle Scholar
  59. Ziman, J. M., Electrons and Phonons (Oxford University Press, Inc., New York, 1960 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gerald D. Mahan
    • 1
    • 2
  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.Oak Ridge National LaboratoryUSA

Personalised recommendations