Many-Particle Physics pp 109-185 | Cite as
Nonzero Temperatures
Abstract
Experiments are done at nonzero temperatures. Since one goal of many-body theory is to explain experiments (another is to predict them), the theories should be done at nonzero temperatures too. It is often unnecessary if the temperature is small compared to other energies in the problem. But often temperature is important, and here it will be incorporated into Green’s functions. The nonzero temperature formalism was originated by Matsubara (1955). It will actually be easier to use than the zero-temperature theory of Chapter 2, so that the Matsubara method will be used throughout the remainder of the book. The zero-temperature result is always easily obtained from the nonzero-temperature result by just setting T = 0.
Keywords
Spectral Function Nonzero Temperature Kubo Formula Wigner Distribution Function Retarded FunctionPreview
Unable to display preview. Download preview PDF.
References
- Abrikosov, A. A., L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics ( Prentice-Hall, Englewood Cliffs, N.J., 1963 ).MATHGoogle Scholar
- Barnard, R. D., Thermoelectricity in Metals and Alloys ( Taylor and Francis, London, 1972 ).Google Scholar
- Brandt, W, and A. Dupasquier, editors of Positron Solid State Physics, Int. School “Enrico Fermi” ( Varenna, Italy, 1981 ).Google Scholar
- Brout, R., and P. Carruthers, Lectures on the many-Electron Problem ( Wiley-Interscience, New York, 1963 ).Google Scholar
- De Groot, S. R., Thermodynamics of Irreversible Processes ( North-Holland, Amsterdam, 1952 ).Google Scholar
- De Groot, S. R., and P. Mazur, Non-Equilibrium Thermodynamics ( North-Holland, Amsterdam, 1962 ).Google Scholar
- Dunn, D., Can. J. Phys. 53, 321 (1975).ADSCrossRefGoogle Scholar
- Green, M. S., J. Chem. Phys. 20, 1281 (1952)MathSciNetADSCrossRefGoogle Scholar
- Green, M. S., J. Chem. Phys. 22, 398 (1954).MathSciNetADSCrossRefGoogle Scholar
- Korn, W, and J. M. Luttinger, Phys. Rev. 118, 41 (1960).MathSciNetADSCrossRefGoogle Scholar
- Kubo, R., Lectures in Theoretical Physics, Vol. I (Boulder) (Wiley-Interscience, New York, 1959), pp. 120–203; J. Phys. Soc. Japan 12, 570 (1957).MathSciNetGoogle Scholar
- Langreth, D., in NATO Advanced Study Institute on Linear and Nonlinear Transport, ed. J. T. Devreese, V E. van Doren ( Plenum, New York, 1976 ), p. 3.Google Scholar
- Lehmann, H., Nuovo Cimento 11, 342 (1954).MathSciNetMATHCrossRefGoogle Scholar
- Luttinger, J. M., Phys. Rev. 135, A1505 (1964).MathSciNetADSCrossRefGoogle Scholar
- Luttinger, J. M., and J. C. Ward, Phys. Rev. 118, 1417 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
- Mahan, G. D., Phys. Rev. B 11, 4814 (1975).ADSCrossRefGoogle Scholar
- Matsubara, T., Prog. Theor. Phys. (Kyoto) 14, 351 (1955).MathSciNetADSMATHCrossRefGoogle Scholar
- Mills, A. P., W. S. Crane, and K. F. Canter, editors of Positron Studies of Solids, Surfaces, Atoms ( World Scientific, Singapore, 1986 ).Google Scholar
- Taylor, P. L., A Quantum Approach to the Solid State ( Prentice-Hall, Englewood Cliffs, N.J., 1970 ).Google Scholar
- Tomonaga, S., Prog. Theor. Phys. (Kyoto) 2, 6 (1947).ADSCrossRefGoogle Scholar
- Wigner, E., Phys. Rev. 40, 749 (1932).ADSCrossRefGoogle Scholar