Introductory Material

  • Gerald D. Mahan
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

First quantization in physics refers to the property of particles that certain operators do not commute:
$$[x,{p_x}] = i\hbar$$
(1.1)
$$E \to i\hbar \frac{\partial }{{\partial t}}$$
(1.2)
Later it was realized that forces between particles were caused by other particles: photons caused electromagnetic forces, pions caused some nuclear forces, etc. These particles are also quantized, which leads to second quantization. The basic idea is that forces are caused by the exchange of particles, and the number of particles is quantized: one, two, three, etc. The quantization imparts a quantum nature to the classical force fields.

Keywords

Harmonic Oscillator Commutation Relation Hubbard Model Anderson Model Pair Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, D., in Solid State Physics, Vol. 21, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press, New York, 1967 ), pp. 1–113.Google Scholar
  2. Anderson, P. W, Phys. Rev. 124, 41 (1961).ADSCrossRefGoogle Scholar
  3. Born, M., and K. Huang, Dynamical theory of Crystal Lattices ( Oxford University Press, London, 1954 ).MATHGoogle Scholar
  4. Callen, H., in Physics of Many-Particle Systems, Vol. 1, ed. E. Meeron ( Gordon and Breach, New York, 1966 ), pp. 183–230.Google Scholar
  5. Domb, C., and M. S. Green, Phase Transitions and Critical Phenomena,Vols. 1–6 (Academic Press, New York, 1972–1977).Google Scholar
  6. Fano, U., Phys. Rev. 124, 1866 (1961).ADSMATHCrossRefGoogle Scholar
  7. Fröhlich, H., H. Pelzer, and S. Zienau, Philos. Mag. 41, 221 (1950).MATHGoogle Scholar
  8. Fröhlich, H., Adv. Phys. 3, 325 (1954).ADSCrossRefGoogle Scholar
  9. Gerritsen, A. N., and J. O. Linde, Physica 17, 573, 584 (1951)ADSCrossRefGoogle Scholar
  10. Gerritsen, A. N., and J. O. Linde, Physica 18, 872 (1954).Google Scholar
  11. Gutzwiller, M. C., Phys. Rev. Lett. 10, 159 (1963).ADSCrossRefGoogle Scholar
  12. Harrison, W. A., Pseudopotentials in the Theory of Metals (Benjamin, Reading, Mass., 1966 ).Google Scholar
  13. Heine, V., in Solid State Physics, Vol. 24, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press, New York, 1970 ).Google Scholar
  14. Hill, T. L., Statistical Mechanics (McGraw-Hill, New York, 1956), Chap. 7.Google Scholar
  15. Hopfield, J. J., Phys. Rev. 112, 1555 (1958).ADSMATHCrossRefGoogle Scholar
  16. Hubbard, J., Proc. R. Soc. London Ser. A 276, 238 (1963)ADSCrossRefGoogle Scholar
  17. Hubbard, J., Proc. R. Soc. London Ser. 277, 237 (1964)ADSCrossRefGoogle Scholar
  18. Hubbard, J., Proc. R. Soc. London Ser. 281, 401 (1964)ADSCrossRefGoogle Scholar
  19. Hubbard, J., Proc. R. Soc. London Ser. 285, 542 (1965)MathSciNetADSCrossRefGoogle Scholar
  20. Hubbard, J., Proc. R. Soc. London Ser. 296, 82, 100 (1966).ADSGoogle Scholar
  21. Jordan, E, and E. Wigner, Z. Phys. 47, 631 (1928).ADSMATHCrossRefGoogle Scholar
  22. Kondo, J., Prog. Theor. Phys. (Kyoto) 32, 37 (1964).ADSCrossRefGoogle Scholar
  23. Kondo, J., in Solid State Physics, Vol. 23, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press, New York, 1969 ), pp. 183–281.Google Scholar
  24. Lieb, E. H., and F. Y. Wu, Phys. Rev Lett. 20, 1445 (1968).ADSCrossRefGoogle Scholar
  25. Mahan, G. D., J. Phys. Chem. Solids 26, 751 (1965).ADSCrossRefGoogle Scholar
  26. Mahan, G. D., in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. T. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 553–657.Google Scholar
  27. Maradudin, A. A., E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation ( Academic Press, New York, 1963 ).Google Scholar
  28. Matsubara, T., and H. Matsuda, Prog. Theor. Phys. (Kyoto) 16, 416 (1956).ADSCrossRefGoogle Scholar
  29. Mozer, B., L. A. Degraaf, and B. Leneindre, Phys. Rev. A 9, 448 (1974).ADSCrossRefGoogle Scholar
  30. Onsager, L., Phys. Rev. 65, 117 (1944).MathSciNetADSMATHCrossRefGoogle Scholar
  31. Parr, R. G., Quantum Theory of Molecular Electronic Structure (Benjamin, Reading, Mass., 1964 ).Google Scholar
  32. Percus, J. K., in The Equilibrium Theory of Classical Fluids,eds. H. L. Frisch and J. L. Lebowitz (Benjamin, Reading, Mass., 1964), pp. II-33—II-170.Google Scholar
  33. Schiff, L. I., Quantum Mechanics ( McGraw-Hill, New York, 1968 ).Google Scholar
  34. Schrieffer, J. R., and P. A. Wolff, Phys. Rev. 149, 491 (1966).ADSCrossRefGoogle Scholar
  35. Thomas, D. G., J. Appl. Phys. Suppl. 32, 2298 (1961).ADSCrossRefGoogle Scholar
  36. Zener, C., Phys. Rev. 81, 440 (1951).ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gerald D. Mahan
    • 1
    • 2
  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.Oak Ridge National LaboratoryUSA

Personalised recommendations