Neuroimaging Evidence of Diaschisis and Reorganization in Stroke Recovery

  • Georg Deutsch
  • James M. Mountz
Part of the Critical Issues in Neuropsychology book series (CINP)

Abstract

In general, two competing but not necessarily mutually exclusive models can explain the mechanisms underlying the often observed recovery of neurological and cognitive function (e.g., limb movement, speech production, language comprehension, perceptual skills) after stroke. One is that recovery essentially reflects resolution of a temporary cessation of function in brain tissue not directly destroyed by the stroke but nevertheless affected via deafferentation and a consequent “diaschisis.” The second is that recovery involves spared brain taking on functions previously performed by damaged brain tissue, for example, the cortical representation of the hand or other damaged sensory—motor regions extends into adjacent tissue, or the uninvolved hemisphere takes on the cognitive capacities of the infarcted side. Thus, the first model emphasizes changes associated with temporarily affected brain, whereas the second accentuates reorganization in noninvolved brain (“plasticity”).

Keywords

Mental Rotation Oxygen Extraction Fraction Magnetic Resonance Spectroscopic Imaging Stroke Recovery Selective Neuronal Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, R. H., Alpert, N. M., Correia, J. A., Finklestein, S., Davis, S. M., Kelley, R. E., Dorman, G. A., D’Alton, J. G., and Taveras, J. M. (1984). Positron imaging in ischemic stroke disease. Annals of Neurology, 15, 5126–5130.CrossRefGoogle Scholar
  2. Anderson, T. P. (1990). Studies up to 1980 on stroke rehabilitation outcomes. Stroke, 21, 43–45.Google Scholar
  3. Anger, H. O., Powell, M. R., van Dyke, D. C., Schaer, L. R., Fawwaz, R., and Yano, Y. (1967). Recent applications of the scintillation camera. Strahlentherapie—Sonderbande, 65, 70–93.PubMedGoogle Scholar
  4. Astrup, J., Siesjo, B. K., and Symon, L. (1981). Thresholds in cerebral ischemia—The ischemic penumbra. Stroke, 12, 723–725.PubMedCrossRefGoogle Scholar
  5. Bandettini, R A., Davis, T. L., Kwong, K. K., Fox, P. T., Jiang, A., Baker, J. R., Belliveau, J. W, Weisskoff, R. M., and Rosen, B. R. (1995). FMRI and PET demonstrate sustained blood oxygenation and flow enhancement during extended visual stimulation. Abstracts of the Society for Magnetic Resonance Annual Meeting, 1995, 453.Google Scholar
  6. Baron, J. C. (1985). Positron tomography in cerebral ischemia: A review. Neuroradiology, 27, 509–516.PubMedCrossRefGoogle Scholar
  7. Bobath, B. (1990). Adult hemiplegia evaluation and treatment ( 3rd ed. ). Heinemann Medical Books, Oxford. New York: Oxford University Press.Google Scholar
  8. Bonte, E. J., Devous, M. D., Reisch, J. S., Ajmani, A. K., Weiner, M. F., Hom, J., and Tinter, R. (1989). The effect of acetazolamide on regional cerebral blood flow in patients with Alzheimer’s disease or stroke as measured by SPECT. Investigative Radiology, 24, 99–103.PubMedCrossRefGoogle Scholar
  9. Buckner, R. L., Corbetta, M., Schatz, J., Raichle, M. E., and Petersen, S. E. (1996). Preserved speech abilities and compensation following prefrontal damage. Proceedings of the National Academy of Sciences USA, 93, 1249–1253.CrossRefGoogle Scholar
  10. Delisa, J. A. (Ed.). (1988). Rehabilitation medicine principles and practice. Philadelphia: Lippincott Raven.Google Scholar
  11. Deutsch, G., Papanicolaou, A. C., Loring, D. W, and Eisenberg, H. M. (1985a). Left hemisphere blood flow during acoustic, phonetic and semantic target tasks. Journal of Clinical and Experimental Neuropsychology, 7, 632.Google Scholar
  12. Deutsch, G., Papanicolaou, A. C., Loring, D. W, and Eisenberg, H. M. (1985b). CBF during tasks intended to differentially activate the cerebral hemispheres: New normative data and preliminary application in recovering stroke patients. Journal of Cerebral Blood Flow and Metabolism, 7, 306.Google Scholar
  13. Deutsch, G., Bourbon, W. T, Papanicolaou, A. C., and Eisenberg, H. M. (1988). Visuospatial tasks compared via activation of regional cerebral blood flow. Neuropsychologia, 26, 445–452.PubMedCrossRefGoogle Scholar
  14. Deutsch, G., Halsey, J. H., Jr., and Harrell, L. E. (1991). Regional CO2 reactivity of cortical blood flow in Alzheimer’s disease. Journal of Cerebral Blood Flow and Metabolism, 2, 22.Google Scholar
  15. Deutsch, G., Katholi, C. R., and Mountz, J. M. (1996a). The relationship of absolute rCBF activation response to age, gender and baseline flow. Neurolmage, 3, 575.CrossRefGoogle Scholar
  16. Deutsch, G., Mountz, J. M., Liu, H. G., and San Pedro, E. C. (1996b). Cerebrovascular stress tests in parenchymal versus vascular disease. Journal of Nuclear Medicine, 37, 88.Google Scholar
  17. Deutsch, G., Mountz, J. M., Katholi, C. R., Liu, H. G., and Harrell, L. E. (1997a). Regional stability of cerebral blood flow measured by repeated Tc-HMPAO SPECT: Implications for the study of state dependent change. Journal of Nuclear Medicine, 38, 6–13.PubMedGoogle Scholar
  18. Deutsch, G., Mountz, J. M., Liu, H., Katholi, C. R., San Pedro, E., and Yester, M. (1997b). Mental rotation and phonological tasks investigated with a new xenon rCBF SPECT method. Neurolmage, 5, 128.Google Scholar
  19. Deutsch, G., Mountz, J. M., Liu, H. G., Sutor, R. J., and Roubin, G. S. (1997c). Xenon SPECT sensitivity to cerebrovascular status in baseline and diamox stress studies. Journal of Cerebral Blood Flow and Metabolism, 17, 199.Google Scholar
  20. Deutsch, G., Mountz, J. M., Twieg, D. B., Southwood, M. H., San Pedro, E. C., and Liu, H. G. (1998). Xenon SPECT, fMRI and FDG evidence for reorganization poststroke. Neurolmage, 7, 498Google Scholar
  21. Devous, M. D., Gong, W, Payne, J. K., and Harris, T. S. (1993). Comparison of technetium-99m-ECD to Xenon-133 SPECT in normal controls and in patients with mild to moderate regional cerebral blood flow abnormalities. Journal of Nuclear Medicine, 34, 754–761.PubMedGoogle Scholar
  22. Dickstein, R., Hocherman, S., Pillar, T., and Shaham, R. (1986). Stroke rehabilitation three exercise therapy approaches. Physical Therapy, 66, 1233–1238.PubMedGoogle Scholar
  23. Dobkin, B. H. (1989). Focused stroke rehabilitation programs do not improve outcome. Archives of Neurology, 46, 701–703.PubMedCrossRefGoogle Scholar
  24. Duncan, P. W., Probst, M., and Nelson, S. G. (1983). Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerobrovascular accident. Physical Therapy, 63, 1606–1610.PubMedGoogle Scholar
  25. Feeney, D. M., and Baron, J. C. (1986). Diaschisis. Stroke, 17, 817–830.PubMedCrossRefGoogle Scholar
  26. Feldmann, M., Voth, E., Dressler, D., Henze, T., and Felgenhauer, K. (1990). 99mTc-Hexamethylpropylene amine oxime SPECT and X-ray CT in acute cerebral ischaemia. Journal of Neurology, 237, 475–479.Google Scholar
  27. Fiorelli, M., Blin, J., Bakchine, S., Laplane, D., and Baron, J. C. (1991). PET studies of cortical diaschisis in patients with motor hemi-neglect. Journal of Neurological Science, 104, 135–142.CrossRefGoogle Scholar
  28. Freund, H. J. (1996, 21 June). Remapping the brain. Science, 272, 1754.Google Scholar
  29. Ginsberg, M. D., Reivich, M., Giandomenico, A., and Greenberg, J. H. (1977). Local glucose utilization in acute focal cerebral ischemia: local dysmetabolism and diaschisis. Neurology, 27, 1042–1048.PubMedCrossRefGoogle Scholar
  30. Herold, S., Brown, M. M., Frackowiak, R. S. J., Mansfield, A. O., Thomas, D. J., and Marshall, J. (1988). Assessment of cerebral haemodynamic reserve: Correlation between PET parameters and CO2 reactivity measured by the intravenous I33Xenon injection technique. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 1045–1050.Google Scholar
  31. Hetherington, H. P., Pan, J. W., Mason, G. F., Ponder, S. L., Twieg, D. B., Deutsch, G., Mountz, J. M., and Pohost, G. M. (1994). 2D Spectroscopic imaging of the human brain at 4.1T without field of view restriction. Magnetic Resonance in Medicine, 32, 530–534.Google Scholar
  32. Kanno, I., Uemura, K., Higano, S., Murakami, M., Iida, H., Miura, S., Shishido, F., Inugami, A., and Sayami, I. (1988). Oxygen extraction fraction at maximally vasodilated tissue in the ischemic brain estimated from the regional CO2 responsiveness measured by positron emission tomography. Journal of Cerebral Blood Flow and Metabolism, 8, 227–235.PubMedCrossRefGoogle Scholar
  33. Kinsbourne, M. (1971). The minor hemisphere as a source of aphasic speech. Archives of Neurology, 25, 302–306. Kraft, G. H., Fitts, S. S., and Hammond, M. C. (1992). Techniques to improve function of the arm and hand in chronic hemiplegia. Archives of Physical Medicine and Rehabilitation, 73, 220–227.Google Scholar
  34. Kwong, K., Belliveau, J. W, Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M.S., Turner, R., Cheng, H. M., Brady, T. J., and Rosen, B. R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Science USA, 89, 5675–5679.CrossRefGoogle Scholar
  35. Lawrence, D. G., and Kuypers, H. G. J. M. (1968). The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal tract lesions. Brain, 91, 1–14.PubMedCrossRefGoogle Scholar
  36. Levine, R. L., Lagreze, H. L., Dobkin, J. A., Hanson, J. M., Satter, M. R., Rowe, B. R., and Nickles, R. J. (1989). Cerebral vasocapacitance and TIAs. Neurology, 39, 25–29.PubMedCrossRefGoogle Scholar
  37. Matsuda, H., Higashi, S., Kinuya, K., Tsuji, S., Nozaki, J., Sumiya, H., Hisada, K., and Yamashita, J. (1991). SPECT evaluation of brain perfusion reserve by the acetazolamide test using Tc-99m HMPAO. Clinical Nuclear Medicine, 16, 572–579.PubMedCrossRefGoogle Scholar
  38. Mountz, J. M. (1989). A method of analysis of SPECT blood flow image data for comparison with computed tomography. Clinical Nuclear Medicine, 14, 192–196.PubMedCrossRefGoogle Scholar
  39. Mountz, J. M. (1991). Quantification of the SPECT Brain scan. In L. M. Freeman (Ed.), Nuclear medicine annual (pp. 67–98 ). New York: Raven Press.Google Scholar
  40. Mountz, J. M., Modell, J. G., Foster, N. L., DuPree, E. S., Ackermann, R. J., Petry, N. A., Bluemlein, L. A., and Kuhl, D. E. (1990). Prognostication of recovery following stroke using the comparison of CT and technetium-99m HM-PAO SPECT. Journal of Nuclear Medicine 31, 61–66.PubMedGoogle Scholar
  41. Mountz, J. M., Deutsch, G., and Khan, S. H. (1993). An atlas of regional cerebral blood flow changes in stroke imaged by Tc-99m HMPAO SPECT with corresponding anatomic image comparison. Clinical Nuclear Medicine, 18, 1067–1082.PubMedCrossRefGoogle Scholar
  42. Mountz, J. M., Wilson, M. W, Wolff, C. G., Deutsch, G., and Harris, J. M. (1994a). Validation of a reference method for correlation of anatomic and functional brain images. Computerized Medical Imaging and Graphics, 18, 163–174.PubMedCrossRefGoogle Scholar
  43. Mountz, J. M., Zhang, B., Hong-Gang, L., and Inampudi, C. (1994b). A reference method for correlation of anatomic and functional brain images: Validation and clinical application. Seminars in Nuclear Medicine, 24, 256–271.PubMedCrossRefGoogle Scholar
  44. Mountz, J. M., Deutsch, G., Kuzniecky, R., and Rosenfeld, S. S. (1994c). Brain SPECT: 1994 update. In L. M. Freeman (Ed.), Nuclear medicine annual 1994 (pp. 1–54 ). New York: Raven Press.Google Scholar
  45. Mountz, J. M., San Pedro, E. C., Mason, G. F., Deutsch, G., and Hetherington, H. P. (1997). Diaschisis characterization in sub-acute stroke by combined rest and diamox rCBF brain SPECT and 4.1T 1H spectroscopy imaging. Journal of Nuclear Medicine, 38, 36 P.Google Scholar
  46. Muller, E, Kunesch, E., Binkofski, E, and Freund, H.-J. (1991). Residual sensorimotor functions in a patient after right sided hemispherectomy. Neuropsychologia, 29, 125–145.PubMedCrossRefGoogle Scholar
  47. Nudo, R. J., Wise, B. M., SiFuentes, F., and Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272, 1791–1794.PubMedCrossRefGoogle Scholar
  48. Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D. W (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Science USA, 87, 9868–9872.CrossRefGoogle Scholar
  49. Ogawa, S., Menon, R. S., Tank, D. W, Kim, S. G., Merkte, H., Ellerman, J. M., and Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependant contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64, 803–812.PubMedCrossRefGoogle Scholar
  50. Ohyama, M., Senda, M., Kitamura, S., Ishii, K., Mishina, M., and Terashi, A. (1996). Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics. Stroke, 27, 897–903.PubMedCrossRefGoogle Scholar
  51. Ottenbacher, K. J., and Jannell, S. (1993). The results of clinical trials in stroke rehabilitation research. Archives ofNeurology, 50, 37–44.CrossRefGoogle Scholar
  52. Papanicolaou, A. C., Moore, B., Deutsch, G., Levin, H. S., and Eisenberg, H. M. (1988). Evidence for right hemisphere involvement in recovery from aphasia. Archives of Neurology, 45, 1025–1029.PubMedCrossRefGoogle Scholar
  53. Pedro-Cuesta, J., Widen-Holmquist, L., and Bach-y-Rita, P. (1992). Evaluation of stroke rehabilitation by randomized controlled studies: A review. Neurologica Scandinavia, 86, 433–439.CrossRefGoogle Scholar
  54. Raynaud, C., Rancurel, G., Samson, Y., and Baron, J. C. (1987). Pathophysiologic study of chronic infarcts: The importance of the periinfarct area. Stroke, 18, 21–29.PubMedCrossRefGoogle Scholar
  55. Reding, M. J., and McDowell, E. H. (1989). Focused stroke rehabilitation programs improve outcome. Archives of Neurology, 46, 700–701.PubMedCrossRefGoogle Scholar
  56. Rogers, R. L., Meyer, J. S., Mortel, K. E, Mahurin, R. K., and Thornby, J. (1985). Age-related reductions in cerebral vasomotor reactivity and the law of initial value: A 4-year prospective longitudinal study. Journal of Cerebral Blood Flow and Metabolism, 5, 79–85.PubMedCrossRefGoogle Scholar
  57. Sawner, K., and LaVigne, J. (Eds.). (1992). Brunnstrom’s movement therapy in hemiplegia: A neurophysiological approach ( 2nd ed. ). Philadelphia: Lippincott Raven.Google Scholar
  58. Seitz, R. J., and Freund, H.-J. (1997). Plasticity of the human motor cortex. Advances in Neurology, 73, 321–333.PubMedGoogle Scholar
  59. Seitz, R. J., Huang, Y., Knorr, U., Tellmann, L., Herzog, H., and Freund, H. J. (1995). Large-scale plasticity of the human motor cortex. NeuroReport, 6, 742–744.PubMedCrossRefGoogle Scholar
  60. Taub, E. (1995). Increasing behavioral plasticity following central nervous system damage in monkeys and man: A method with potential application to human developmental motor disability. In B. Julesz and I. Kovacs (Eds.), Maturational windows and adult cortical plasticity (pp. 201–215 ). Redwood City, CA: Addison-Wesley.Google Scholar
  61. Vaughan, J. T., Hetherington, H. P., Otu, J. O., Pan, J. W, and Pohost, G. M. (1994). High frequency volume coils for clinical NMR imaging and spectroscopy. Magnetic Resonance in Medicine, 32, 206–218.PubMedCrossRefGoogle Scholar
  62. von Monakow, C. (1969). Diaschisis. In K. H. Pribram (Ed.), Brain and behaviour I: Mood states and mind (pp. 27–36 ). Baltimore: Penguin.Google Scholar
  63. Voss, D. E., Ionta, M. K., and Myers, B. J. (1985). Proprioceptive neuromuscular facilitation ( 3rd ed. ). Philadelphia: Harper and Row.Google Scholar
  64. Wagenaar, R. C., Meijer, O. G., and van Wieringen, P. C. W. (1990). The functional recovery of stroke: A comparison between neuro-developmental treatment and the Brunnstrom method. Scandinavian Journal of Rehabilitation Medicine, 22, 1–8.PubMedGoogle Scholar
  65. Weiller, C., Ramsay, S C, Wise, R. S., Friston, K. J., and Frackowiak, R. S. J. (1993). Individual patterns of functional reorganization in human cerebral cortex after capsular infarction. Annals of Neurology, 33, 181–189.PubMedCrossRefGoogle Scholar
  66. Yudd, A. P., Van Heertum, R. L., and Masdeu, J. C. (1991). Interventions and functional brain imaging. Seminars in Nuclear Medicine, 21, 153–158.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Georg Deutsch
    • 1
  • James M. Mountz
    • 1
  1. 1.Department of RadiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations