Pulsed NMR Studies on the Interfacial Structure of the Block Copolymers of Styrene and Isoprene with Variable Interface

  • Mingming Guo

Abstract

Three kinds of block copolymers of styrene and isoprene with different interface structure were prepared by using step anionic copolymerization method. A diblock copolymer (SI), tapered block copolymer (TBSI) and poly[isoprene-b-(isoprene-costyrene)-b-styrene] triblock copolymers (INA) were used for the following studies. Information about content, composition and thickness of the interface, as well as molecular motion differences in the three phases were obtained by using proton solid state NMR. In addition, complementary studies using dynamic mechanic analysis, TEM and solution NMR were performed. The order of the interface content of the samples is TBSI>INA>SI. This is consistent with the sequence length results from solution NMR. The spin-spin relaxation time T2, which is a function of the system mobility of the rigid PS block of TBSI, is longer than that of SI and INA. while the T2 of the mobile PI block of TBSI is shorter than that of SI and INA. This indicates that there is a substantial mixing of the incompatible components within the PS and PI domain. The interfaces detected by NMR seem to be mainly by the intramolecular effect because the interface consists of 70% isoprene, and 30% styrene.

Keywords

Diblock Copolymer Free Induction Decay Dynamic Nuclear Polarization Random Copolymer Interface Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Hashimoto, M. Shibayama, and H. Kawai, Macromolecules 13: 1237 (1980)CrossRefGoogle Scholar
  2. 2.
    T. Hashimoto, M. Fulita, and H. Kawai, Macromolecules 13: 1660 (1980)CrossRefGoogle Scholar
  3. 3.
    N. Dingenouts, Y. S. Kim, M. Ballauff, Coll.Polvm.Sci. 272: 1380 (1994)CrossRefGoogle Scholar
  4. 4.
    R.W. Richards, and J. L. Thomason, Polymer 24: 1089 (1983)CrossRefGoogle Scholar
  5. 5.
    K. Sondergaard, and J. Lyngaae-Jorgensen, Polymer 37: 509 (1996).CrossRefGoogle Scholar
  6. 6.
    S. Ni. P. Zhang, Y. Wang, M. A. Winnik, Macromolecules 27: 5742 (1994).CrossRefGoogle Scholar
  7. 7.
    O. Tcherkasskaya, S. Ni, and M. A. Winnik, Macromolecules 29: 610 (1996).CrossRefGoogle Scholar
  8. 8.
    O. Tcherkasskaya, S. Ni, and M. A. Winnik. Macromolecules 29: 4241 (1996).CrossRefGoogle Scholar
  9. 9.
    E. Nakamura, H. Hasegawa, AND H. Hashimoto, Kobunshi Ronhun 53: 248 (1996).CrossRefGoogle Scholar
  10. 10.
    E. Boucher. J. P. Folkers, H. Hervet, L. Leger, AND C. Creton, Macromolecules 29: 774 (1996).CrossRefGoogle Scholar
  11. 11.
    J. Diamant, D. Soong, and M. C. Williams, Polym. Eng. Sci. 22: 673 (1982).CrossRefGoogle Scholar
  12. 12.
    F. Annighofer. and W. Gronski, Makromol. Chem. 185: 2213 (1984).CrossRefGoogle Scholar
  13. 13.
    X. Quan, H.E. Bair, and J. E. Johnson, Macromolecules 22: 4631 (1989).CrossRefGoogle Scholar
  14. 14.
    B.B. Sauer, and D. J. Walsh. Macromolecules 24: 5948 (1991).CrossRefGoogle Scholar
  15. S.H. Anastasiadis, T.P. Russell, S.K. Satija, and C.F. Majkrzak, Phys. Rev. Lett. 62: 1852 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    S.H. Anastasiadis, T.P. Russell, S.K. Satija, and C.F. Majkrzak, J. Chem. Pin’s. 92: 5677 (1990)CrossRefGoogle Scholar
  17. 17.
    H. Serizawa, M. Ito, T. Kanamoto, K. Tanaka, and A. Nomura, Polymer J. 14: 149 (1982)CrossRefGoogle Scholar
  18. 18.
    G. E. Wardell, and V. J. McBrierty, Rubber Chem. Technol. 55: 1095 (1982)CrossRefGoogle Scholar
  19. 19.
    M. Ito, T. Kanamoto, K. Tanaka, and R. S. Porter, Macromolecules 14: 1779 (1981).CrossRefGoogle Scholar
  20. 20.
    M. Ito, H. Serizawa, K. Tanaka, W. P. Leung, and C. L. Choy, J. Polym.Sci., Polym. Phys. Eel. 21: 2299 (1983).CrossRefGoogle Scholar
  21. 21.
    H. Tanaka, J. Appl. Polvm.Sci., 27: 2197 (1982).CrossRefGoogle Scholar
  22. 22.
    H. Tanaka, and T. Nishi, Rep. Prog. Polym. Phys. Jpn. 27: 545 (1984)Google Scholar
  23. 23.
    H. Tanaka, and T. Nishi, J. Chem. Phys. 82 (9): 4326 (1985).CrossRefGoogle Scholar
  24. 24.
    T. Yu, and M. Guo, Progress in Polymer Science 15: 825 (1990).CrossRefGoogle Scholar
  25. 25.
    M. Guo, Trends in Polymer Science 4 (7): 238 (1996).Google Scholar
  26. 26.
    N. Nishiyama, K. Komatsu, K. Fukai, K. Nemoto, and M. Kumagai. Composites 26: 309 (1995).CrossRefGoogle Scholar
  27. 27.
    U. Mukai, K.K. Gleason, A.S. Argon, and R.E. Cohen, Macromolecules 28: 4899 (1995).CrossRefGoogle Scholar
  28. 28.
    C.D. Arvanitopoulos and J.L. Koenig, J. Adhesion 53: 15 (1995).CrossRefGoogle Scholar
  29. 29.
    G. Tong, Y. Pan, M. Afeworki, M.D. Poliks, and J. Schaefer, Macromolecules 28: 1719 (1995).CrossRefGoogle Scholar
  30. 30.
    M. Afeworki, R.A. McKay. and J. Schaefer, Mater. Sci. Eng., A A162: 221 (1993).CrossRefGoogle Scholar
  31. 31.
    M. Afeworki and J. Schaefer, Macromolecules 25: 4097 (1992).CrossRefGoogle Scholar
  32. 32.
    N. Zumbulyadis, C. Landry, and T.E. Long, Macromolecules 26: 2647 (1993).CrossRefGoogle Scholar
  33. 33.
    N. Zumbulyadis and J.M. O’Reilly, Macromolecules 24: 5294 (1991).CrossRefGoogle Scholar
  34. 34.
    N. Zumbulyadis, Sol. State Nucl. Magn. Reson. 5: 3, (1995).CrossRefGoogle Scholar
  35. 35.
    N. Zumbulyadis, M.R. Landry, and T.P. Russell, Macromolecules 29: 2201 (1996).CrossRefGoogle Scholar
  36. 36.
    W. Maas and W.S. Veeman, Polym. Mater. Sci. Eng. 71: 211 (1994).Google Scholar
  37. 37.
    W.S. Veeman, Composite Inter faces 2: 389, (1995).Google Scholar
  38. 38.
    M. Guo, Polvrn. Prepr. (Ant. Chem. Soc. Div. Polym. Chem.), 37 (2): 664 (1996).Google Scholar
  39. 39.
    F. Annighofer, and W. Gronski, Colloid & Polym. Sci. Makromol. Chem. 185: 22 13 (1984)Google Scholar
  40. 40.
    M. Guo, Polym. Prepr. (Am. Chem. Soc. Div. Polyin. Chem.) 37 (2): 666 (1996).Google Scholar
  41. 41.
    M.Guo, T. Yu, and Z. Xue, Makromol. Chem., Rapid Commun. 8: 601 (1987).CrossRefGoogle Scholar
  42. 42.
    J.G., Powles, and J.H. Strange, Proc. Phys. Soc. 82: 6 (1983).CrossRefGoogle Scholar
  43. 43.
    G.Schnell, “Discussion of the German Bunsen Society” Ludwigshafen,October, (1965).Google Scholar
  44. 44.
    G.Kraus, et al., J. Appl. Polym. Sci_ 11:1581 (1967).Google Scholar
  45. 45.
    Kinstle, J.F. and Harwood, J.H., Polym. Prepr.(Am. Chem. Soc. Div. Polym. Chem.) 10 (2): 1389 (1969).Google Scholar
  46. 46.
    Y. Tsukahara, Polymer J. 12 (7): 455 (1980).CrossRefGoogle Scholar
  47. 47.
    M. Guo, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Mater.) 75: 267 (1996).Google Scholar
  48. 48.
    K. Schmidt-Rohr, and H.W. Spiess, Macromolecules 25: 3273 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Mingming Guo
    • 1
  1. 1.Institute of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations