Optical Spectroscopy of the Lattice Modes in Graphite Intercalation Compounds

  • P. C. Eklund
Part of the NATO ASI Series book series (NSSB, volume 148)

Abstract

The weak coupling between carbon and intercalate layers in graphite intercalation compounds (GIC) [1,2] results in a lattice mode picture consisting of perturbed graphitic modes, and new modes derived from the intercalate layer. Lattice modes in GICs have been studied using Raman scattering, IR reflection spectroscopy and inelastic neutron scattering. Neutron studies are typically limited to the frequency range ω<;400 cm−1 and require much larger samples, such as can be prepared from polycrystalline pyrolytic graphite. The crystallites are preferentially aligned in this material, resulting in a well defined sample c-axis. Neutron scattering studies have therefore been largely concerned with the low frequency interlayer c-axis modes. The strong intralayer bonding between relatively light carbon atoms gives rise to high frequency optic branches which have been extensively studied using Raman and infrared (IR) spectroscopy. Most of these spectra are taken with radiation incident on the c-face (cleavage face). A limited number of optical experiments have been carried out [3] on a-faces, however. The a-face is important for studying interlayer modes which are excited when the electric vector \(\vec E\) is parallel to the graphitic c-axis \((\vec E\parallel \vec C)\)

Keywords

Phonon Dispersion Bound Layer Mode Graphite Intercalation Compound Pristine Graphite Raman Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Solin, Adv. Chem. Phys. 49, 455 (1982).Google Scholar
  2. 2.
    M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
  3. 3.
    M. Zanini, D. Grubisic and J.E. Fischer, Phys. Stat. Sol. 90, 151 (1978).CrossRefGoogle Scholar
  4. 4.
    M.S. Dresselhaus and G. Dresselhaus in Topics in Applied Physics, Vol. 51, Light Scattering in Solids III, eds. M. Cardona and G. Guntherodt ( Springer-Verlag, Berlin, Heidelber, 1982 ).Google Scholar
  5. 5.
    R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 4514 (1982).CrossRefGoogle Scholar
  6. 6.
    M. Maeda, Y. Kuramoto and C. Horie, J. Phys. Soc. Japan 47, 337 (1979).CrossRefGoogle Scholar
  7. 7.
    C. Horie, M. Maeda and Y. Kuramoto, Physica 99, 430 (1980).Google Scholar
  8. 8.
    S.Y. Leung, G. Dresselhaus and M.S. Dresselhaus, Solid St. Commun. 38, 175 (1981); Phys. Rev. B 24, 6083 (1981).CrossRefGoogle Scholar
  9. 9.
    R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 4523 (1982).CrossRefGoogle Scholar
  10. 10.
    R. Nemanich and S.A. Solin, Phys. Rev. B 20, 392, (1979).CrossRefGoogle Scholar
  11. 11.
    B.S. Elman, M.S. Dresselhaus, G. Dresselhaus, E.W. Maby, H. Mazurek and G. Dresselhaus, Phys. Rev. B 24, 1027 (1981).Google Scholar
  12. 12.
    R.J. Nemanich, G. Lucovsky and S.A. Solin, Solid St. Commun. 23, 117 (1977).Google Scholar
  13. 13.
    P.C. Eklund, M.H. Yang and G.L. Doll, Optical Properties of Donor GICs, in this volume.Google Scholar
  14. 14.
    P.C. Eklund, Synthesis of GICs, in this volume.“). 163.Google Scholar
  15. 15.
    C. Underhill, S.Y. Leung, G. Dresselhaus, and M.S. Dresselhaus, Solid St. Commun. 29, 769 (1979).CrossRefGoogle Scholar
  16. 16.
    S.A. Solin, Mat. Sci. Engng. 31, 153 (1977).Google Scholar
  17. 17.
    D.M. Hwang and D. Guerard, Solid St. Commun. 40, 759 (1981).CrossRefGoogle Scholar
  18. 18.
    W.A. Kamitakahara, J.L. Zarestky and P.C. Eklund, Syn. Met. 12, 301 (1985).CrossRefGoogle Scholar
  19. 19.
    L. Pietronero and S. Strassler, Phys. Rev. Lett. 47, 593 (1981).CrossRefGoogle Scholar
  20. 20.
    P.C. Eklund, C.H. Olk, F.J. Holler, J.G. Spolar and E.T. Arakawa, J. Mat. Res. 1, 361 (1986).CrossRefGoogle Scholar
  21. 21.
    P.C. Eklund, Charge transfer and Electrochemistry, in this volume.Google Scholar
  22. 22.
    S.Y. Leung, C. Underhill, G. Dresselhaus and M.S. Dresselhaus, Solid State Commun., 33, 285 (1980).CrossRefGoogle Scholar
  23. 23.
    G. Gualberto, C. Underhill, S.Y. Leung, G. Dresselhaus, Phys. Rev. B 21, 862 (1980).CrossRefGoogle Scholar
  24. 24.
    C. Underhill, S.Y. Leung, G. Dresselhaus and M.S. Dresselhaus, Solid St. Commun. 29, 769 (1979).CrossRefGoogle Scholar
  25. 25.
    J. Giergiel and P.C. Eklund, in Intercalated Graphite, eds M.S. Dresselhaus, G. Dresselhaus, J.E. Fischer and M.J. Moran, MRS Symposia Proc. Vol. 20, (North Holland, New York, Amsterdam, Oxford, 1982)Google Scholar
  26. 26.
    J. Giergiel, P.C. Eklund, R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 6881 (1982).CrossRefGoogle Scholar
  27. 27.
    A. Magerl and H. Zabel, Phys. Rev. Lett. 46, 444 (1981).Google Scholar
  28. 28.
    M.V. Klein, in Light Scattering in Solids, ed. M. Cardona ( Springer, New York, 1975 ).Google Scholar
  29. 29.
    Note the dramatic difference in the continuum scattering in LiC6 in the following three Ref.’s: P.C. Eklund, G. Dresselhaus, M.S. Dresselhaus and J.E. Fischer, Phys. Rev. B 21, 4705 (1980), M. Zanini, L.Y. Ching and J.E. Fischer, Phys. Rev B 18, 2020 (1978). G.L. Doll, P.C. Eklund and J.E. Fischer (submitted for publication).Google Scholar
  30. 30.
    P.C. Eklund and K.R. Subbaswamy, Phys. Rev. B 20, 5157 (1979).CrossRefGoogle Scholar
  31. 31.
    M.S. Dresselhaus and G. Dresselhaus, in Physics and Chemistry of Materials with Layered Structures, ed. F. Levy ( Dordrecht, Holland, 1978 ).Google Scholar
  32. 32.
    N. Caswell and S.A. Solin, Phys. Rev. B20, 2551 (1979).CrossRefGoogle Scholar
  33. 33.
    P.C. Eklund, G. Dresselhaus, M.S. Dresselhaus, and J.E. Fischer, Phys. Rev. B16, 3330 (1977).Google Scholar
  34. 34.
    S.A. Solin, P. Chow and H. Zabel, Phys. Rev. Lett. 53, 1927 (1984).CrossRefGoogle Scholar
  35. 35.
    G. Furdin, B. Carton, A. Herold and C. Zeller, Acad. Sci. Ser. B 280, 653 (1975).Google Scholar
  36. 36.
    D. Neumann, H. Zabel, J.J. Rush and N. Berk, Phys. Rev. Lett. 53, 56 (1984).CrossRefGoogle Scholar
  37. 37.
    I. Ohana, D. Schmeltzer and Y. Yacoby, in Extended Abstracts of the 1984 MRS Symposium on Graphite Intercalation Compounds, ed. P.0 Eklund, M.S. Dresselhaus and G. Dresselhaus, p. 121 (1984).Google Scholar
  38. 38.
    P.C. Eklund, G.D. Mahan, J.G. Spolar, E.T. Arakawa, J.M. Zhang and D.M. Hoffman, Solid St. Commun. 57, 567 (1986).Google Scholar
  39. 39.
    J. Blinowski, N. H. Hau, C. Rigaux, J.P. Vieren, R. Toullec, G. Furdin, A. Herold and J. Melin, J. Phys. (Paris) 41, 47 (1980).Google Scholar
  40. 40.
    K.K. -R Shung, Phys. Rev. B, in press.Google Scholar
  41. 41.
    J.M. Zhang and P.C. Eklund, Phys. Rev. B, (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • P. C. Eklund
    • 1
  1. 1.University of KentuckyLexingtonUSA

Personalised recommendations