Advertisement

New Insights into the Pathophysiology and Severity Assessment of Acute Pancreatitis

  • D. J. van Westerloo
  • M. J. Bruno
  • T. van der Poll

Abstract

Acute pancreatitis is an acute sterile inflammation of the pancreas. The diagnosis is made on the basis of a distinct clinical syndrome consisting of acute onset abdominal pain radiating to the back and frequently accompanied by nausea and/or vomiting, combined with a more than threefold increase of serum amylase or lipase above the upper limit of normal. In the western world the most common causes of acute pancreatitis are alcohol abuse and gallstones [1]. The disease is characterized by the premature activation of digestive enzymes in the pancreas, followed by a massive immunological response resulting in autodigestion of the gland, local, and subsequent systemic inflammation. The incidence of the disease varies between 5–20 per 100 000 persons per year, with 10–20% of patients developing severe pancreatitis of whom up to 30% may die as a result of the development of secondary complications such as pancreatitis-associated lung injury, infectious complications or multiple organ failure (MOF) [1]. This chapter will focus on recent developments in the understanding of the pathophysiology and immunopathology of acute pancreatitis and its complications and discuss the importance of early severity prediction including the merits of various prognostic markers.

Keywords

Acute Pancreatitis Chronic Pancreatitis Severe Acute Pancreatitis Pancreatic Necrosis Pancreatitis Severity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mergener K, Baillie J (1998) Acute pancreatitis. Br Med J 316: 44 48Google Scholar
  2. 2.
    Steer ML, Saluja AK (1993) Experimental pancreatitis: studies of the early events that lead to cell injury. In: Lian V, Go W, Dimagno EP, et al (eds) The Pancreas: Biology, Pathobiology and Disease. Raven Press, New York, pp 11–36Google Scholar
  3. 3.
    Steer ML (1999) Early events in acute pancreatitis. Baillieres Best Pract Res Clin Gastroenterol 13: 213–225PubMedCrossRefGoogle Scholar
  4. 4.
    Saluja AK, Donovan EA, Yamanaka K, Yamaguchi Y, Hofbauer B, Steer ML (1997) Ceruleininduced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology 113: 304–310PubMedCrossRefGoogle Scholar
  5. 5.
    Halangk W, Lerch MM, Brandt-Nedelev B, et al (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 1.06: 773–781Google Scholar
  6. 6.
    Van Acker GJ, Saluja AK, Bhagat L, Singh VP, Song AM, Steer ML (2002) Cathepsin B inhibition prevents trypsinogen activation and reduces pancreatitis severity. Am J Physiol 283: G794 - G800Google Scholar
  7. 7.
    Witt H, Luck W, Hennies HC, et al (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25: 213–216PubMedCrossRefGoogle Scholar
  8. 8.
    Norman J (1998) The role of cytokines in the pathogenesis of acute pancreatitis. Am J Surg 175: 76–83PubMedCrossRefGoogle Scholar
  9. 9.
    Gukovskaya AS, Gukovsky I, Zaninovic V, et al (1997) Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Invest 100: 1853–1862Google Scholar
  10. 10.
    Gukovsky I, Gukovskaya AS, Blinman TA, Zaninovic V, Pandol SJ (1998) Early NF-kappaB activation is associated with hormone-induced pancreatitis. Am J Physiol 275: G1402 - G1414PubMedGoogle Scholar
  11. 11.
    Grisham MB (1999) NF-kappa B activation in acute pancreatitis: protective, detrimental, or inconsequential? Gastroenterology 116: 489–492PubMedCrossRefGoogle Scholar
  12. 12.
    Chen X, Ji B, Han B, Ernst SA, Simeone D, Logsdon CD (2002) NF-kappa B activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology 122: 448–457PubMedCrossRefGoogle Scholar
  13. 13.
    Denham W, Yang J, Wang H, Botchkina G, Tracey KJ, Norman J (2000) Inhibition of p38 mitogen activate kinase attenuates the severity of pancreatitis-induced adult respiratory distress syndrome. Crit Care Med 28: 2567–2572PubMedCrossRefGoogle Scholar
  14. 14.
    Denham W, Fink G, Yang J, Ulrich P, Tracey KJ, Norman J (1997) Small molecule inhibition of tumor necrosis factor gene processing during acute pancreatitis prevents cytokine cascade progression and attenuates pancreatitis severity. Am Surg 63: 1045–1049PubMedGoogle Scholar
  15. 15.
    Norman JG, Fink GW, Messina J, Carter G, Franz MG (1996) Timing of tumor necrosis factor antagonism is critical in determining outcome in murine lethal acute pancreatitis. Surgery 120: 515–521PubMedCrossRefGoogle Scholar
  16. 16.
    Norman JG, Fink GW, Sexton C, Carter G (1996) Transgenic animals demonstrate a role for the IL-1 receptor in regulating IL-lbeta gene expression at steady-state and during the systemic stress induced by acute pancreatitis. J Surg Res 63: 231–236PubMedCrossRefGoogle Scholar
  17. 17.
    de Beaux AC, Goldie AS, Ross JA, Carter DC, Fearon KC (1996) Serum concentrations of inflammatory mediators related to organ failure in patients with acute pancreatitis. Br J Surg 83: 349–353PubMedCrossRefGoogle Scholar
  18. 18.
    Osman MO, Jacobsen NO, Kristensen JU, et al (1998) IT 9302, a synthetic interleukin-10 agonist, diminishes acute lung injury in rabbits with acute necrotizing pancreatitis. Surgery 124: 584–592PubMedCrossRefGoogle Scholar
  19. 19.
    Van Deventer SJ (1997) Tumour necrosis factor and Crohn’s disease. Gut 40: 443–448PubMedGoogle Scholar
  20. 20.
    Kaufmann P, Tilz GP, Lueger A, Demel U (1997) Elevated plasma levels of soluble tumor necrosis factor receptor (sTNFRp60) reflect severity of acute pancreatitis. Intensive Care Med 23: 841–848PubMedCrossRefGoogle Scholar
  21. 21.
    Hughes CB, Grewal HP, Gaber LW, et al (1996) Anti-TNF alpha therapy improves survival and ameliorates the pathophysiologic sequelae in acute pancreatitis in the rat. Am J Surg 171: 274–280PubMedCrossRefGoogle Scholar
  22. 22.
    Fink GW, Norman JG (1997) Specific changes in the pancreatic expression of the interleukin 1 family of genes during experimental acute pancreatitis. Cytokine 9: 1023–1027PubMedCrossRefGoogle Scholar
  23. 23.
    Norman JG, Fink G, Franz M, et al (1996) Active interleukin-1 receptor required for maximal progression of acute pancreatitis. Ann Surg 223: 163–169PubMedCrossRefGoogle Scholar
  24. 24.
    Rau B, Paszkowski A, Lillich S, Baumgart K, Moller P, Beger HG (2001) Differential effects of caspase-1/interleukin-lbeta-converting enzyme on acinar cell necrosis and apoptosis in severe acute experimental pancreatitis. Lab Invest 81: 1001–1013PubMedCrossRefGoogle Scholar
  25. 25.
    Papanicolaou DA, Wilder RL, Manolagas SC, Chrousos GP (1998) The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med 128: 127–137PubMedCrossRefGoogle Scholar
  26. 26.
    Van der Poll T, van Deventer SJ (1998) The role of interleukin 6 in endotoxin-induced inflammatory responses. Prog Clin Biol Res 397: 365–377PubMedGoogle Scholar
  27. 27.
    Berney T, Gasche Y, Robert J, et al (1999) Serum profiles of interleukin-6, interleukin-8, and interleukin-10 in patients with severe and mild acute pancreatitis. Pancreas 18: 371–377PubMedCrossRefGoogle Scholar
  28. 28.
    Lane JS, Todd KE, Gloor B, et al (2001) Platelet activating factor antagonism reduces the systemic inflammatory response in a murine model of acute pancreatitis. J Surg Res 99: 365–370PubMedCrossRefGoogle Scholar
  29. 29.
    Kingsnorth AN, Galloway SW, Formela LJ (1995) Randomized, double-blind phase II trial of Lexipafant, a platelet-activating factor antagonist, in human acute pancreatitis. Br J Surg 82: 1414–1420PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson CD, Kingsnorth AN, Imrie CW, et al (2001) Double blind, randomised, placebo controlled study of a platelet activating factor antagonist, lexipafant, in the treatment and prevention of organ failure in predicted severe acute pancreatitis. Gut 48: 62–69PubMedCrossRefGoogle Scholar
  31. 31.
    Van der Poll T, Jansen PM, Montegut WJ, et al (1997) Effects of IL-10 on systemic inflammatory responses during sublethal primate endotoxemia. J Immunol 158: 1971–1975PubMedGoogle Scholar
  32. 32.
    Van Laethem JL, Eskinazi R, Louis H, Rickaert F, Robberecht P, Deviere J (1998) Multisystemic production of interleukin 10 limits the severity of acute pancreatitis in mice. Gut 43: 408–413PubMedCrossRefGoogle Scholar
  33. 33.
    Deviere J, Le Moine O, Van Laethem JL, et al (2001) Interleukin 10 reduces the incidence of pancreatitis after therapeutic endoscopic retrograde cholangiopancreatography. Gastroenterology 120: 498–505PubMedCrossRefGoogle Scholar
  34. 34.
    Bhatia M, Saluja AK, Hofbauer B, Lee HS, Frossard JL, Steer ML (1998) The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis-associated lung injury. Int J Pancreatol 24: 77–83PubMedGoogle Scholar
  35. 35.
    Satoh A, Shimosegawa T, Fujita M, et al (1999) Inhibition of nuclear factor-kappa B activation improves the survival of rats with taurocholate pancreatitis. Gut 44: 253–258PubMedCrossRefGoogle Scholar
  36. 36.
    Frossard JL, Saluja A, Bhagat L, et al (1999) The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 116: 694–701PubMedCrossRefGoogle Scholar
  37. 37.
    Shokuhi S, Bhatia M, Christmas S, Sutton R, Neoptolemos JP, Slavin. J (2002) Levels of the chemokines growth-related oncogene alpha and epithelial neutrophil-activating protein 78 are raised in patients with severe acute pancreatitis. Br J Surg 89: 566–572Google Scholar
  38. 38.
    Denham W, Yang J, Fink G, Zervos EE, Carter G, Norman J (1997) Pancreatic ascites as a powerful inducer of inflammatory cytokines. The role of known vs unknown factors. Arch Surg 132: 1231–1236Google Scholar
  39. 39.
    Gukovskaya AS, Vaquero E, Zaninovic V, et al (2002) Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology 122: 974–984PubMedCrossRefGoogle Scholar
  40. 40.
    Rau B, Paszkowski A, Esber S, et al (2001) Anti-ICAM-1 antibody modulates late onset of acinar cell apoptosis and early necrosis in taurocholate-induced experimental acute pancreatitis. Pancreas 23: 80–88PubMedCrossRefGoogle Scholar
  41. 41.
    Bhatia M, Brady M, Zagorski J, et al (2000) Treatment with neutralising antibody against cytokine induced neutrophil chemoattractant ( CINC) protects rats against acute pancreatitis associated lung injury. Gut 47: 838–844Google Scholar
  42. 42.
    Guice KS, Oldham KT, Johnson KJ, Kunkel RG, Morganroth ML, Ward PA (1988) Pancreatitis-induced acute lung injury. An ARDS model. Ann Surg 208: 71–77Google Scholar
  43. 43.
    Schmid SW, Uhl W, Friess H, Malfertheiner P, Buchler MW (1999) The role of infection in acute pancreatitis. Gut 45: 311–316PubMedCrossRefGoogle Scholar
  44. 44.
    Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165: 867–903PubMedCrossRefGoogle Scholar
  45. 45.
    Runkel N, Eibl G (1999) Pathogenesis of pancreatic infection. In: Buchler M (ed) Acute Pancreatitis: Novel Concepts in Biology and Therapy. Blackwell Science, Boston, pp 255–261Google Scholar
  46. 46.
    Luiten EJ, Hop WC, Lange JF, Bruining HA (1995) Controlled clinical trial of selective decontamination for the treatment of severe acute pancreatitis. Ann Surg 222: 57–65PubMedCrossRefGoogle Scholar
  47. 47.
    Bassi C, Falconi M, Valerio A, Marcucci S, Graziani R, Pederzoli P (1999) Identification of pancreatic infection. In: Buchler M (ed) Acute Pancreatitis: Novel Concepts in Biology and Therapy. Blackwell Science, Boston, pp 277–282Google Scholar
  48. 48.
    D’Egidio A, Schein M (2002) Surgical strategies in the treatment of pancreatic necrosis and infection. Br J Surg 78: 133–137CrossRefGoogle Scholar
  49. 49.
    Nakos G, Malamou-Mitsi VD, Lachana A, et al (2002) Immunoparalysis in patients with severe trauma and the effect of inhaled interferon-gamma. Crit Care Med 30: 1488–1494PubMedCrossRefGoogle Scholar
  50. 50.
    Van Westerloo DJ, Schultz MJ, Bruno MJ, van Deventer S, van der Poll T (2002) Acute pancreatitis renders mice more susceptible to Pseudomonas pneumonia, which in turn aggravates the severity of pancreatitis. Evidence for a pathological vicious circle. ICAAC 2002 abstract book, ASM Press, Herndon, B808Google Scholar
  51. 51.
    Van Westerloo DJ, Weijer S, Bruno MJ, et al (2002) Acute pancreatitis impairs antibacterial host defense in abdominal sepsis in mice. ICAAC 2002 abstract book, ASM Press, Herndon, B1421Google Scholar
  52. 52.
    Windsor JA (2000) Search for prognostic markers for acute pancreatitis. Lancet 355: 19241925Google Scholar
  53. 53.
    Funbell I, Bornman P, Weakley S, Terblanche J, Marks I (1993) Obesity: an important prognostic factor in acute pancreatitis. Br J Surg 80: 484–486CrossRefGoogle Scholar
  54. 54.
    Larvin M, McMahon MJ (1989) APACHE II score for assessment and monitoring of acute pancreatitis. Lancet 2: 201–205PubMedCrossRefGoogle Scholar
  55. 55.
    Heat D, Imrie CW (1994) The Hong Kong criteria and severity prediction in acute pancreatitis. Int J Pancreatol 15: 1–7Google Scholar
  56. 56.
    Ranson H, Rifkind K, Roses D, Fink S, Eng K, Spencer F (1974) Prognostic signs and the role of operative management in acute pancreatitis. Surg Gynaecol Obstet 139: 69–81Google Scholar
  57. 57.
    Munoz-Bongrand N, Panis Y, Soyer P, et al (2001) Serial computed tomography is rarely necessary in patients with acute pancreatitis: a prospective study in 102 patients. J Am Coll Surg 193: 146–152PubMedCrossRefGoogle Scholar
  58. 58.
    Neoptolemos JP, Kemppainen EA, Mayer JM, et al (2000) Early prediction of severity in acute pancreatitis by urinary trypsinogen activation peptide: a multicentre study. Lancet 355: 1955–1960PubMedCrossRefGoogle Scholar
  59. 59.
    Imrie CW (1999) Ransom, Glasgow, APACHE II systems: is the score a bore? In: Buchler M (ed) Acute Pancreatitis: Novel Concepts in Biology and Therapy. Blackwell Science, Boston, pp 199–209Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • D. J. van Westerloo
  • M. J. Bruno
  • T. van der Poll

There are no affiliations available

Personalised recommendations