Minimally Invasive Hemodynamic Monitoring

  • W. T. Peruzzi
  • R. Gould
  • L. Brodsky
Conference paper

Abstract

One of the most important goals of caring for critically ill patients is maintenance of adequate organ perfusion; as such, hemodynamic monitoring has become a cornerstone of critical care medicine. The ability to rapidly and accurately obtain and interpret hemodynamic parameters, as well as to manipulate these parameters according to clinical changes, remains a significant part of the intensivist’s practice. The primary parameters of interest to the intensivist are the physiologic markers of preload, afterload, and contractility as well as well as the balance between oxygen delivery (DO2) and utilization. Today the intensivist has a multitude of monitors to assist him in the hemodynamic monitoring of the patient. The pulmonary artery catheter (PAC) remains a popular method for obtaining such important hemodynamic information [1–3]. Some controversy regarding the risks and benefits of PAC use [2, 4] has caused the intensivist to look to other techniques of hemodynamic monitoring [1, 5].

Keywords

Cardiac Output Pulmonary Artery Catheter Hemodynamic Monitoring Lithium Chloride Pulse Contour Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Linton DM, Gilon DM (2002) Advances in noninvasive cardiac output monitoring. Ann Cardiac Anesth 5: 141–148Google Scholar
  2. 2.
    Connors Jr AF, Speroff T, Dawson NV, et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276: 889–897PubMedCrossRefGoogle Scholar
  3. 3.
    Anonymous (1997) Pulmonary Artery Catheter Consensus Conference: consensus statement. Crit Care Med 25: 910–925CrossRefGoogle Scholar
  4. 4.
    Cusack RJ, Rhodes A (1997) Pulmonary artery catheter — to use or not to use; that is the question? Clin Intensive Care 11: 117–119Google Scholar
  5. 5.
    Berton C, Cholley B (2002) Equipment review: New techniques for cardiac output measurement — oesophageal Doppler, Fick principle using carbon dioxide, and pulse contour analysis. Crit Care 6: 216–221PubMedCrossRefGoogle Scholar
  6. 6.
    Linton R, Band D, O’Brien T, Jonas M, Leach R (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25: 1796–1800PubMedCrossRefGoogle Scholar
  7. 7.
    Linton RAF, Band DM, Haire KM (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71: 262–266PubMedCrossRefGoogle Scholar
  8. 8.
    Newman DG, Callister R (1999) The non-invasive assessment of stroke volume and cardiac output by impedance cardiography: a review. Aviat Space Environ Med 70: 780–789PubMedGoogle Scholar
  9. 9.
    Pianosi PT (1997) Impedance cardiography accurately measures cardiac output during exercise in patients with cystic fibrosis. Chest 111: 333–337PubMedCrossRefGoogle Scholar
  10. 10.
    Blanch L, Fernandez R, Benito S, et al (1988) Accuracy of an indirect carbon dioxide Fick method in determination of the cardiac output in critically ill mechanically ventilated patients. Intensive Care Med 14: 131–135PubMedCrossRefGoogle Scholar
  11. 11.
    Arnold JH, Stenz RI, Thompson JE, Arnold LW (1996) Noninvasive determination of cardiac output using single breath CO2 analysis. Crit Care Med 24: 1701–1705PubMedCrossRefGoogle Scholar
  12. 12.
    Rosenberg P, Yancy CW (2000) Noninvasive assessment of hemodynamics: an emphasis on bioimpedance cardiography. Curr Opin Cardiol 15: 151–155PubMedCrossRefGoogle Scholar
  13. 13.
    Von Rueden KT, Turner M (1999) Advances in continuous, noninvasive hemodynamic surveillance. Crit Care Nurs Clin North Am 11: 63–75Google Scholar
  14. 14.
    Shoemaker WC Belzberg H, Wo CC, et al (1998) Multicenter study of noninvasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients. Chest 114: 1643–1652PubMedCrossRefGoogle Scholar
  15. 15.
    Summers RL, Kolb JC, Woodward LH, Galli RL (1999) Differentiating systolic from diastolic heart failure using impedance cardiography. Acad Emerg Med 7: 693–699CrossRefGoogle Scholar
  16. 16.
    Castor G, Klocke RK, Stoll M, et al (1994) Simultaneous measurement of cardiac output by thermodilution, thoracic elecrical bioimpedance and Doppler ultrasound. Br J Anaesth 72: 133–138PubMedCrossRefGoogle Scholar
  17. 17.
    Burchell SA, Yu M, Takiguchi SA, et al (1997) Evaluation of a continuous cardiac output and mixed venous oxygen saturation catheter in critically ill surgical patients. Crit Care Med 25: 388–391PubMedCrossRefGoogle Scholar
  18. 18.
    Tuman KJ, Gilbert CC, Ivankovich AD (1989) Pitfalls in interpretation of pulmonary artery catheter data. J Cardiothorac Anesth 3: 625–641PubMedCrossRefGoogle Scholar
  19. 19.
    Kuntscher MV, Blome-Eberwein S, Pelzer M, Erdmann D, Germann G (2002) Transcardiopulmonary vs pulmonary arterial thermodilution methods for hemodynamic: monitoring of burned patients. J Burn Care Rehabil 23: 21–26PubMedCrossRefGoogle Scholar
  20. 20.
    Antonutto G, Girardis M, Tuniz D, di Prampero PE (1995) Noninvasive assessment of cardiac output from arterial pressure profiles during exercise. Eur J Appl Physiol 72: 18–24CrossRefGoogle Scholar
  21. 21.
    Hirschl M, Kittler H, Woisetschlager C, et al (2000) Simultaneous comparison of thoracic bioimpedance and arterial pulse waveform-derived cardiac output with thermodilution measurement. Crit Care Med 28: 1798–1802PubMedCrossRefGoogle Scholar
  22. 22.
    Kurita T, Morita K, Kato S, et al (1997) Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 79: 770–775PubMedCrossRefGoogle Scholar
  23. 23.
    Eremenko A, Balykov I, Chaus N, Kislukhin V, Krivitski N (1998) Use of an extracorporeal arteriovenous tubing loop to measure cardiac output in intensive care unit patients by ultrasound velocity dilution. ASAIO J 44: M462 - M464PubMedCrossRefGoogle Scholar
  24. 24.
    Davis CC, Jones NL, Sealey BJ (1978) Measurements of cardiac output in seriously ill patients using a CO2 rebreathing method. Chest 73: 167–172PubMedCrossRefGoogle Scholar
  25. 25.
    Barney J (1996) Thoracic electrical bioimpedance device. Crit Care Med 24: 1090–1091PubMedCrossRefGoogle Scholar
  26. 26.
    Nakonezny PA, Kowalewski RB, Ernst JM, et al (2001) New ambulatory impedance cardiograph validated against the Minnesota Impedance Cardiograph. Psychophysiology 38: 465–473PubMedCrossRefGoogle Scholar
  27. 27.
    Barin E, Haryadi DG, Schookin SI, et al (2000) Evaluation of a thoracic bioimpedance cardiac output monitor during cardiac catheterization. Crit Care Med 28: 698–702PubMedCrossRefGoogle Scholar
  28. 28.
    Van der Meer NJ, Vonk Noordegraaf A, Kamp O, de Vries PM (1999) Noninvasive measurement of cardiac output: two methods compared in patients with mitral regurgitation. Angiology 50: 95–101PubMedCrossRefGoogle Scholar
  29. 29.
    Thangathurai D, Charbonnet C, Roessler P, et al (1997) Continuous intraoperative noninvasive cardiac output monitoring using a new thoracic bioimpedance device. J Cardiothorac Vasc Anesth 11: 440–444PubMedCrossRefGoogle Scholar
  30. 30.
    Zacek P, Kunes P, Kobzova E, Dominik J (1999) Thoracic electrical bioimpedance versus thermodilution in patients post open-heart surgery. Acta Medica (Hradec Kralove) 42: 19–23Google Scholar
  31. 31.
    Lee TL (1994) Pitfalls of Hemodynamic Monitoring. In: Faust RJ (ed) Anesthesiology Review, 2nd ed, Churchill Livingstone, New York, pp 263–264Google Scholar
  32. 32.
    Murray MJ, Coursin DB, Pearl RG, Prough DS (2002) Critical Care Medicine Perioperative Management 2nd Edition Lippincot, Williams & Wilkins, Philadelphia, pp 195–196Google Scholar
  33. 33.
    Tsagaropoulou AT, Vasiliadis K, Fessatidis I, Papavasi-Liou E, Spyrou P (2002) Beware Swan-Ganz complications. Perioperative management. J Cardiovasc Surg 43: 467–470Google Scholar
  34. 34.
    Brown J (2002) Use of echocardiography for hemodynamic monitoring. Crit Care Med 30: 1361–1364PubMedCrossRefGoogle Scholar
  35. 35.
    Pinto FJ, Siegel LC, Chenzbraun A, et al (1994) Online estimation of cardiac output with a new automated border detection system using transesophageal echocardiography: A preliminary comparison with thermodilution. J Cardiothorac Vasc Anes 8: 625–630CrossRefGoogle Scholar
  36. 36.
    Greim CA, Roewer N, Laux G, et al (1996) Online estimation of left ventricular stroke volume using transoesophageal echocardiography and acoustic quantification. Br J Anaesth 77: 365–369PubMedCrossRefGoogle Scholar
  37. 37.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1: 307–310PubMedCrossRefGoogle Scholar
  38. 38.
    Huntsman, Stewart DK, Barnes SR, Franklin SB, Colocousis JS, Hessel EA (1983) Nonivasive Doppler determination of cardiac output in man: clinical validation. Circulation 67: 593–602PubMedCrossRefGoogle Scholar
  39. 39.
    Mark JB, Steinbrook RA, Gugino RD, et al (1986) Continuous noninvasive monitoring of cardiac output with esophageal Doppler ultrasound during cardiac surgery. Anesth Analg 65: 1013–1020PubMedCrossRefGoogle Scholar
  40. 40.
    Perrino AC, Flemming J, LaMantia KR (1991) Transesophageal Doppler cardiac output monitoring: performance during aortic reconstrcuctive surgery. Anesth Analg 73. 705–710PubMedCrossRefGoogle Scholar
  41. 41.
    Cariou M, Monchi M, Joly LM, et al (1998) Nonivasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo-3000 system. Crit Care Med 26: 2066–2072PubMedCrossRefGoogle Scholar
  42. 42.
    Laupland KB, Bands CJ (2002) Uility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review Canadian. J Anesth 49: 393–401Google Scholar
  43. 43.
    Wesseling KH, deWitt B, Weber AP, et al (1983) A simple device for the continuous measurement of cardiac output. Adv Cardiovasc Phys 5: 1–52Google Scholar
  44. 44.
    Chaney JC, Derdak (2002) Minimally invasive hemodynamic monitoring for the intensivist: current and emerging technologies. Crit Care Med 30: 2338–2345Google Scholar
  45. 45.
    Garcia-Rodriguez C, Pittman J, Cassel CH, et al (2002) Lithium dilution cardiac output measurement: a clinical assessment of central venous and peripheral venous indicator injection. Crit Care Med 30: 2199–2204PubMedCrossRefGoogle Scholar
  46. 46.
    Doering L, Lum E, Dracup K, Friedman A (1995) Predictors of between-method differences in cardiac output measurement using thoracic electrical bioimpedance and thermodilution. Crit Care Med 23: 1667–1673PubMedCrossRefGoogle Scholar
  47. 47.
    Maric P, Pendelton J, Smith R (1997) A comparison of hemodynamic parameters derived from transthoracic electrical bioimpedance with those parameters obtained by thermodilution and ventricular angiography. Crit Care Med 25: 1545–1550CrossRefGoogle Scholar
  48. 48.
    Wong KL, Hou PC (1996) The accuracy of bioimpedance cardiography in the measurement of cardiac output in comparison with thermodilution method. Acta Anaesthesiology Sin 34: 55–59Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • W. T. Peruzzi
  • R. Gould
  • L. Brodsky

There are no affiliations available

Personalised recommendations