Endothelial Cell Replacement Therapy in the Critically Ill

  • S. V. Baudouin
Conference paper

Abstract

One of the long-standing goals of medical research is to find methods of regenerating damaged and destroyed tissues and vital organs. Solid organ transplantation is well established in the treatment of irreversible single organ failure. However, it is severely limited by lack of suitable organs, the problems of tissue rejection, and the need for significant and long-term immunosuppressive treatment. Although the occasional patient with critical illness will benefit from single organ transplantation, it remains extremely unlikely that solid organ transplantation for multi-organ failure (MOF) will ever become a realistic clinical prospect.

Keywords

Vascular Endothelial Growth Factor Endothelial Progenitor Cell Vascular Repair Endothelial Cell Loss Hindlimb Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van der Kooy D, Weiss S (2000) Why stem cells? Science 287: 1439–1441PubMedCrossRefGoogle Scholar
  2. 2.
    Watt FM, Hogan BLM (2000) Out of Eden: Stem cells and their niches. Science 287: 14271430Google Scholar
  3. 3.
    Fuchs E, Segre JA (2000) Stem cells: A new lease on life. Cell 100: 143–155Google Scholar
  4. 4.
    Moore MA (2002) Putting the neo into neoangiogenesis. J Clin Invest 109: 313–315PubMedGoogle Scholar
  5. 5.
    Luttun A, Carmeliet G, Carmeliet P (2002) Vascular progenitors: from biology to treatment. Trends Cardiovasc Med 12: 88–96PubMedCrossRefGoogle Scholar
  6. 6.
    Rafii S (2000) Circulating endothelial precursors: Mystery, reality, and promise. J Clin Invest 105: 17–19PubMedCrossRefGoogle Scholar
  7. 7.
    Vallet B, Wiel E (2001) Endothelial cell dysfunction and coagulation. Crit Care Med 29: S36 - S41PubMedCrossRefGoogle Scholar
  8. 8.
    van der Poll T (2001) Immunotherapy of sepsis. Lancet Infect Dis 1: 165–174PubMedCrossRefGoogle Scholar
  9. 9.
    Reidy MA, Schwartz SM (1983) Endothelial injury and regeneration. IV. Endotoxin: a non-denuding injury to aortic endothelium. Lab Invest 48: 25–34PubMedGoogle Scholar
  10. 10.
    Young JS, Headrick JP, Berne RM (1991) Endothelial-dependent and -independent responses in the thoracic aorta during endotoxic shock. Circ Shock 35: 25–30PubMedGoogle Scholar
  11. 11.
    Reidy MA, Bowyer DE (1997) Scanning electron microscopy: Morphology of aortic endothelium following injury by endotoxin and during subsequent repair. Atherosclerosis 26: 319–328Google Scholar
  12. 12.
    Leclerc J, Pu Q, Corseaux D, et al (2000) A single endotoxin injection in the rabbit causes prolonged blood vessel dysfunction and a procoagulant state. Crit Care Med 28: 3672–3678PubMedCrossRefGoogle Scholar
  13. 13.
    Mutunga M, Fulton B, Bullock R, et al (2001) Circulating endothelial cells in patients with septic shock. Am J Respir Crit Care Med 163: 195–200PubMedCrossRefGoogle Scholar
  14. 14.
    Reid PT, Donnelly SC, Haslett C (1995) Inflammatory predictors for the development of the adult respiratory distress syndrome. Thorax 50: 1023–1026PubMedCrossRefGoogle Scholar
  15. 15.
    Henry TD (1999) Therapeutic angiogenesis. Br Med J 318: 1536–1539CrossRefGoogle Scholar
  16. 16.
    Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol 282: C947 - C970Google Scholar
  17. 17.
    Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor ( VEGF) and its receptors. FASEB J 13: 9–22Google Scholar
  18. 18.
    Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22: 201207Google Scholar
  19. 19.
    Choi K (1998) Hemangioblast development and regulation. Biochem Cell Biol 76: 947–956PubMedCrossRefGoogle Scholar
  20. 20.
    Poole TJ, Finkelstein EB, Cox CM (2001) The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 220: 1–17PubMedCrossRefGoogle Scholar
  21. 21.
    Asahara T, Murohara T, Sullivan A, et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967PubMedCrossRefGoogle Scholar
  22. 22.
    Shi Q, Rafii S, Wu MH, et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92: 362–367PubMedGoogle Scholar
  23. 23.
    Krause DS, Fackler MJ, Civin CI, May WS (1996) CD34: structure, biology, and clinical utility. Blood 87: 1–13PubMedGoogle Scholar
  24. 24.
    Peichev M, Naiyer AJ, Pereira D, et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95: 952–958PubMedGoogle Scholar
  25. 25.
    Mandy Z, Otun HA, Dunlop W, Gillespie JI (1998) The responsiveness of isolated human hand vein endothelial cells in normal pregnancy and in pre-eclampsia. J Physiol 508: 609617Google Scholar
  26. 26.
    Mutin M, Canavy I, Blann A, Bory M, Sampol J, Dignat-George F (1999) Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood 93: 2951–2958PubMedGoogle Scholar
  27. 27.
    Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP (1997) Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 337: 1584–1590PubMedCrossRefGoogle Scholar
  28. 28.
    Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105: 71–77PubMedCrossRefGoogle Scholar
  29. 29.
    Asahara T, Masuda H, Takahashi A, et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228PubMedCrossRefGoogle Scholar
  30. 30.
    Gunsilius E, Duba HC, Petzer AL, et al (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355: 1688–1691PubMedCrossRefGoogle Scholar
  31. 31.
    Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109: 337–346PubMedGoogle Scholar
  32. 32.
    Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J (2002) Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 33: 1362–1368PubMedCrossRefGoogle Scholar
  33. 33.
    Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103: 1231–1236PubMedCrossRefGoogle Scholar
  34. 34.
    Flamme I, Frolich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173: 206–210PubMedCrossRefGoogle Scholar
  35. 35.
    Asahara T, Takahashi T, Masuda H, et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18: 39643972Google Scholar
  36. 36.
    Takahashi T, Kalka C, Masuda H, et al (1999) Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5: 434–438PubMedCrossRefGoogle Scholar
  37. 37.
    Shintani S, Murohara T, Ikeda H, et al (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103: 2776–2779PubMedCrossRefGoogle Scholar
  38. 38.
    Gill M, Dias S, Hattori K, et al (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 88: 167–174PubMedCrossRefGoogle Scholar
  39. 39.
    Vasa M, Fichtlscherer S, Adler K, et al (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103: 2885–2890PubMedCrossRefGoogle Scholar
  40. 40.
    Kocher AA, Schuster MD, Szabolcs MJ, et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7: 430–436PubMedCrossRefGoogle Scholar
  41. 41.
    Crosby JR, Kaminski WE, Schatteman G, et al (2000) Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87: 728730Google Scholar
  42. 42.
    Zhang ZG, Zhang L, Jiang Q, Chopp M (2002) Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90: 284–288PubMedCrossRefGoogle Scholar
  43. 43.
    Grant MB, May WS, Caballero S, et al (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8: 607–612PubMedCrossRefGoogle Scholar
  44. 44.
    Kaushal S, Amiel GE, Guleserian KJ, et al (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7: 1035–1040PubMedCrossRefGoogle Scholar
  45. 45.
    Bhattacharya V, McSweeney PA, Shi Q, et al (2000) Enhanced endothelialization and micro-vessel formation in polyester grafts seeded with CD34+ bone marrow cells. Blood 95: 581585Google Scholar
  46. 46.
    Freedman SB, Isner JM (2002) Therapeutic angiogenesis for coronary artery disease. Ann Intern Med 136: 54–71PubMedCrossRefGoogle Scholar
  47. 47.
    Tateishi-Yuyama E, Matsubara H, Murohara T, et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360: 427–435PubMedCrossRefGoogle Scholar
  48. 48.
    Iwaguro H, Yamaguchi J, Kalka C, et al (2002) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105: 732–738PubMedCrossRefGoogle Scholar
  49. 49.
    Emerson SG (1996) Ex vivo expansion of hematopoietic precursors, progenitors, and stem cells: the next generation of cellular therapeutics. Blood 87: 3082–3088PubMedGoogle Scholar
  50. 1.
    Van der Kooy D, Weiss S (2000) Why stem cells? Science 287: 1439–1441PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • S. V. Baudouin

There are no affiliations available

Personalised recommendations