Other Techniques of Utility for Olive Oil Analysis

  • Giorgio Bianchi
  • Angela De Simone
  • Angela Di Camillo
  • Lucia Giansante
  • Aldo Tava

Abstract

The analysis of vegetable oils, particularly olive oil, is a subject of increasing research activity by many investigators all over the world. There is a continuing requirement for rapid, accurate, and automated analytical methodologies to determine whether olive oil has the provenance claimed for it or whether it has been adulterated with or substituted by a lower-grade oil. A number of modern spectroscopic and spectrometric analytical methods operating on user-friendly instruments have entered most laboratories during recent years.

Keywords

Steryl Ester Olive Fruit Unsaponifiable Fraction Stereospecific Analysis Pyrolysis Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasbi, M., Shoemann, D. W. and Saari-Csallany, A. (1993). High-performance liquid chromatography of selected phenolic compounds in olive oils. JAm Oil Chem Soc 70, 367–370.CrossRefGoogle Scholar
  2. Aleksander, I. (1989). Neural Computing Architectures: The Design of Brain-Like Machines. Cambridge, MA: MIT.Google Scholar
  3. Amelio, M., Rizzo, R. and Varazini, F. (1992). Determination of sterols, uvaol and alkanols in olive oils using combined solid-phase extraction, high-performance liquid chromatographic and high-resolution gas chromatographic techniques. J Chromatogr 606, 179–185.CrossRefGoogle Scholar
  4. Amelio, M., Rizzo, R. and Varazini, E. (1993). Separation of wax esters from olive oils by high-performance liquid chromatography. JAm Oil Chem Soc 70, 793–796.CrossRefGoogle Scholar
  5. Angerosa, E, et al. (1995). GC-MS evaluation of phenolic compounds in virgin olive oil. JAgric Food Chem 43, 1802–1807.CrossRefGoogle Scholar
  6. Angerosa, E, et al. (1996). Characterization of phenolic and secoiridoid aglycones present in virgin olive oil by gas chromatography-chemical ionization mass spectrometry. J Chromatogr A 736, 195–203.CrossRefGoogle Scholar
  7. Angerosa, F., et al. (1997). Carbon stable isotopes and olive oil adulteration with pomace oil. JAgric Food Chem 45, 3044–3048.CrossRefGoogle Scholar
  8. Angerosa, E, Di Giacinto, L. and d’Alessandro, N. (1997). Quantitation of some flavour components responsible for the “green” attributes in virgin olive oil. JHigh Res Chromatogr 20, 507–510.CrossRefGoogle Scholar
  9. Angerosa, F., Di Giacinto, L. and Solinas, M. (1990). Influenza dello stoccaggio in massa delle olive sull’aroma degli oli di risulta: valutazione del difetto di ‘riscaldo’ mediante analisi HPLC e GLC dei composti volatili. Riv Merceol 29, 275–294.Google Scholar
  10. Antoniosi Filho, N. R., Carrilho, E. and Lanças, E M. (1993). Fast quantitative analysis of soybean oil in olive oil by high-temperature capillary gas chromatography. JAm Oil Chem Soc 70, 1051–1053.CrossRefGoogle Scholar
  11. Aparicio, R., Alonso, V. and Morales, M. T. (1996). Developments in olive oil authentication. Proceedings of Food Authenticity ‘86: Method for the Measurement of Food Authenticity and Adulteration. Norwich, England: Institute of Food Research.Google Scholar
  12. Aparicio, R. and Morales, M. T. (1994). Optimization of a dynamic headspace technique for quantifying virgin olive oil volatiles. Relationships between sensory attributes and volatile peaks. Food Qual Pref 5, 109–114.CrossRefGoogle Scholar
  13. Aparicio, R., Morales, M. T. and Alonso, M. V. (1996). Relationship between volatile compounds and sensory attributes of olive oils by the sensory wheel. JAm Oil Chem Soc 73, 1253–1264.CrossRefGoogle Scholar
  14. Baokang, Y. and Jyhping, C. (1991). Analysis of neutral lipids and glycerolysis products from olive oil by liquid chromatography. JAm Oil Chem Soc 68, 980.CrossRefGoogle Scholar
  15. Bello, A. C. (1992). Rapid isolation of sterol fraction in edible oils using a silica cartridge. JAssoc Off Anal Chem Int75, 1120–1123.Google Scholar
  16. Bianchi, G., et al. (1993). Stable isotope ratio (13C/12C) of olive oil components. JAgric Food Chem 41, 1936–1940.CrossRefGoogle Scholar
  17. Bianchi, G., et al. (1994a). Chemical structure of long-chain esters from ‘Sansa’ olive oil. JAm Oil Chem Soc 71, 365–369.CrossRefGoogle Scholar
  18. Bianchi, G., et al. (1994b). NMR and chemical studies of the morphologically different parts of the olive fruit (Olea europaea L.). Acta Horticult 356, 260–263.Google Scholar
  19. Bianchi, G., et al. (1996a). Food adulteration: Rapid determination of percentage of low grade olive oil in extra virgin olive oil using curie point pyrolysis mass spectrometry and artificial neural networks. 12th International Symposium on Analytical and Applied Pyrolysis, Venezia, October 14–18.Google Scholar
  20. Bianchi, G., et al. (1996b). Rapid determination of geographical origin of extra virgin olive oil using curie point pyrolysis mass spectrometry and artificial neural networks. 12th International Symposium on Analytical and Applied Pyrolysis, Venezia, October 14–18.Google Scholar
  21. Bianchi, G. and Pozzi, N. (1994). 3,4-dihydroxyphenylglycol, a major C6–C2 phenolic in Olea europaea fruits. Phytochemistry 35, 1335–1337.Google Scholar
  22. Bianchi, G. and Tava, A. (1998). Oxidation of simpler phenolic compounds to form cycloenone metabolites in olive fruits. In Modern Developments in Food Lipids, pp. 235–244. Edited by V. K. S. Shukla and S. P. Kochhar. Lystrupp, Denmark: International Food Science Centre A/S.Google Scholar
  23. Biedermann, M. et al. (1996). Detection of desterolized sunflower oil in olive oil through isomerized A’ sterols. Z Lebesm Unters Forsh 202, 199–204.CrossRefGoogle Scholar
  24. Biedermann, M., Grob, K. and Bronz, M. (1995). Determination of stigmastadiene in edible oils by HPLC-HPLC-UV. Riv Ital Sostanze Grasse 72, 397–401.Google Scholar
  25. Biedermann, M., Grob, K. and Mariani, C. (1993). Transesterification and on-line LC-GC for determining the sum of free and esterified sterols in edible oils and fats. Fett Wiss Technol 95, 127–133. Biedermann, M., Grob, K. and Mariani, C. (1995). On-line LC-UV-GC-FID for the determination of A’- and A8(14)- sterols and its application for the detection of adulterated olive oils. Riv Ital Sostanze Grasse 72, 339–344.Google Scholar
  26. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford, England: Clarendon Press. Blekas, G., Guth, H. and Grosch, W. (1994). Change in the levels of olive oil odorants during ripening of the fruits. In Trends in Flavour Research, pp. 499–502. Edited by H. Maarse and D. G. van der Heij. Amsterdam: Elsevier Science.Google Scholar
  27. Bocci, E, Frega, N. and Lercker, G. (1992). Studio preliminare sui composti volatili di olí di oliva extravergini. Riv Ital Sostanze Grasse 69, 611–613.Google Scholar
  28. Boschelle, O., Mozzon, M. and Lercker, G. (1992). Metodo per la determinazione degli acidi liberi in piccoli campioni. Applicazione nell’olio estratto dalla drupa dell’olivo. Riv Ital Sostanze Grasse 69, 257–261.Google Scholar
  29. Cabras, P., et al. (1997a). Persistence of insecticide residues in olives and olive oil. JAgric Food Chem 45, 2244–2247.CrossRefGoogle Scholar
  30. Cabras, P., et al. (1997b). Simplified multiresidue method for the determination of organophosphorus insecticides in olive oil. J Chromatogr 761, 327–331.CrossRefGoogle Scholar
  31. Camera, L. and Angerosa, E (1978). Gli alcoli superiori dell’olio di oliva: Loro valutazione nel corso della maturazione delle olive. Nota I. Riv Ital Sostanze Grasse 55, 138–146.Google Scholar
  32. Chryssafidis, D., et al. (1992). Composition of total and esterified 4a-monomethylsterols and triter-pene alcohols in virgin olive oil. JSci FoodAgric 58, 581–583.CrossRefGoogle Scholar
  33. Cinquanta, L., Esti, M. and La Notte, E. (1997). Evaluation of phenolic compounds in virgin olive oil during storage. JAm Oil Chem Soc 74, 1259–1264.CrossRefGoogle Scholar
  34. Cortesi, N., et al. (1995). I componenti minori polari degli oli vergini di oliva: ipotesi di struttura mediante LC-MS. Riv Ital Sostanze Grasse 72, 241–251.Google Scholar
  35. Cortesi, N. and Fedeli, E. (1983). I composti polari di oli di oliva vergine. Nota 1. Riv Ital Sostanze Grasse 60, 341–351.Google Scholar
  36. Cortesi, N., Ponzani, A. and Fedeli, E. (1981). Caratterizzazione degli oli vergini e raffinati mediante HPLC dei composti polari. Nota preliminare. Riv Ital Sostanze Grasse 58, 108–114.Google Scholar
  37. Cortesi, N., Rovellini, P. and Fedeli, E. (1990). I trigliceridi degli oli naturali. Nota I. Riv Ital Sostanze Grasse 67, 69–73.Google Scholar
  38. Damiani, P., et al. (1994). Comparison between two procedures for stereospecific analysis of triacylglycerols from vegetable oils. I. Olive oil. JAm Oil Chem Soc 71, 1157–1162.CrossRefGoogle Scholar
  39. Damiani, P., et al. (1997). Stereospecific analysis of the triacylglycerols fraction and linear discriminant analysis in the climatic differentiation of Umbrian extra-virgin olive oils. J ChromatogrA 758, 109–116.CrossRefGoogle Scholar
  40. Del Barrio, A., et al. (1983). Aplicación de la cromatografia gas-liquido, técnica de espacio de cabeza, al problema del atrojado de los aceites de oliva. II. Grasas Aceites 34, 1–6.Google Scholar
  41. Del Barrio, A., Gutiérrez, E and Gutierrez, R. (1981). Aplicación de la cromatografia gas-liquido, técnica de espacio de cabeza, al problema del atrojado de los aceites de oliva. I. Grasas Aceites 32, 155–161.Google Scholar
  42. Di Muccio, A., et al. (1991). Solid-matrix partition for separation of organochlorine pesticide residues from fatty materials. J Chromatogr 552, 241–247.CrossRefGoogle Scholar
  43. Dionisi, E, Prodolliet, J. and Tagliaferri, E. (1995). Assessment of olive oil adulteration by reversed-phase high-performance liquid chromatography/amperometric detection of tocopherols and tocotrienols. JAm Oil Chem Soc 72, 1505–1511.CrossRefGoogle Scholar
  44. Dobarganes, M. C., Olías, J. M. and Gutierrez, R. (1980). Componentes volatiles en el aroma del aceite de oliva virgen. III. Reproducibilidad del método utilizado para su aislamento, concentración y separación. GrasasAceites 31, 317–321.Google Scholar
  45. Dobarganes, M. C., Rios, J. J. and Pérez-Camino, M. C. (1986). Relaciones entre la composición de aceites vegetales y los componentos volatiles producidos durante su termoxidación. Grasas Aceites 37, 61–67.Google Scholar
  46. El-Hamdy, A. H. and El-Fizga, N. K. (1995). Detection of olive oil adulteration by measuring its authenticity factor using reversed-phase high-performance liquid chromatography. J ChromatogrA 708, 351–355.CrossRefGoogle Scholar
  47. Esti, M., Cinquanta, L. and La Notte, E. (1998). Phenolic compounds in different olive varieties. J Agric Food Chem 46, 32–35.CrossRefGoogle Scholar
  48. Official Journal of the Commission of the European Communities (EC) (1991). Regulation No 2568/91, September 5 1988. Google Scholar
  49. Evans, N., et al. (1975). Applications of high-pressure liquid chromatography and field desorption mass spectrometry in studies of natural porphyrins and chlorophyll derivatives. J Chromatogr 115, 325–333.CrossRefGoogle Scholar
  50. Fascioli, R., et al. (1992). Analisi di trigliceridi mediante HPLC in confronto con quella eseguita per GLC. Nota 1. Riv Ital Sostanze Grasse 69, 83–87.Google Scholar
  51. Flor, R. V., Hecking, L. T. and Martin, B. D. (1993). Development of high-performance liquid chromatography criteria for determination of grades of commercial olive oil. 1. Normal ranges for the triacylglycerols. JAm Oil Chem Soc 70, 199–203.CrossRefGoogle Scholar
  52. Frega, N., et al. (1993). High-resolution GC of unsaponifiable matter and sterol fraction in vegetable oils. Chromatographia 36, 215–217.CrossRefGoogle Scholar
  53. Frega, N., Bocci, E and Lercker, G. (1992). Direct gas chromatographic analysis of the unsaponifiable fraction of different oils with a polar capillary column. JAm Oil Chem Soc 69, 447–450.CrossRefGoogle Scholar
  54. Frega, N., Bocci, E and Lercker, G. (1993a). High-resolution gas-chromatographic determination of diacylglycerols in common vegetable oils. JAm Oil Chem Soc 70, 175–177.CrossRefGoogle Scholar
  55. Frega, N., Bocci, E and Lercker, G. (1993b). High-resolution gas chromatographic determination of alkanols in oils extracted from olives. JAm Oil Chem Soc 70, 919–921.CrossRefGoogle Scholar
  56. Gandul Rojas, B., et al. (1991). Control de pigmentos clorofilicos y carotenoides por HPLC en el aceite de oliva virgen. GrasasAceites 42, 56–60.CrossRefGoogle Scholar
  57. Gariboldi, P., Jommi, G. and Verotta, L. (1986). Secoiridoids from Olea europaea. Phytochemistry 25, 865–869.CrossRefGoogle Scholar
  58. Gasparoli, A., Fedeli, E. and Manganiello, B. (1986). Olio vergine di oliva: valutazione dei caratteri organolettici attraverso tecniche strumentali. Riv Ital Sostanze Grasse 63, 571–582.Google Scholar
  59. Gerst, N., et al. (1997). An update look at the analysis of unsaturated C27 sterols by gas chromatography and mass spectrometry. JLipid Res 38, 1685–1701.Google Scholar
  60. Gilkison, I. S. (1988). Quantitative and qualitative analysis of triglycerides using gradient elution with UV detection. Chromatographia 26, 181–185.CrossRefGoogle Scholar
  61. Gomes, T. (1992). Oligopolymer, diglyceride and oxidized triglyceride contents as measures of olive oil quality. JAm Oil Chem Soc 69, 1219–1223.CrossRefGoogle Scholar
  62. Gomes, T. (1994). Composti di ossidazione e di neoformazione in oli di sansa raffinati. Riv Ital Sostanze Grasse 71, 539–542.Google Scholar
  63. Gomes, T. and Caponio, F. (1997). Evaluation of the state of oxidation of crude olive-pomace oils. Influence of olive-pomace drying and oil extraction with solvent. JAgric Food Chem 45, 1381–1384.CrossRefGoogle Scholar
  64. Goodacre, R. (1994). Characterisation and quantification of microbial systems using pyrolysis mass spectrometry: introducing neural networks to analytical pyrolysis. Mycrobiol Europe 2, 16–22.Google Scholar
  65. Goodacre, R. (1997). Use of pyrolysis mass spectrometry with supervised learning for the assessment of the adulteration of milk of different species. Appl Spectrosc 51, 1144–1153.CrossRefGoogle Scholar
  66. Goodacre, R., Hammond, D. and Kell, D. B. (1997). Quantitative analysis of the adulteration of orange juice with sucrose using pyrolysis mass spectrometry and chemomterics. J Anal App! Pyr 40/41 135–158.Google Scholar
  67. Goodacre, R., Kell, D. B. and Bianchi G. (1992). Neural networks and olive oil. Nature, 359, 594. Goodacre, R., Kell, D. B. and Bianchi G. (1993). Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass-spectrometry and artificial neural networks. J Sci Food Agric 63, 297–307.Google Scholar
  68. Goodacre, R., Neal, M. J. and Kell, D. B. (1994). Rapid and quantitative analysis of the pyrolysis mass spectra of complex binary and tertiary mixtures using multivariate calibration and artificial neural networks. Anal Chem 66, 1070–1085.CrossRefGoogle Scholar
  69. Goodacre, R., Neal, M. J. and Kell, D. B. (1996). Quantitative analysis of multivariate data using artificial neural networks: a tutorial review and applications to the decomposition of pyrolysis mass spectra. Zentralbl Bakteriol 284, 516–539.CrossRefGoogle Scholar
  70. Gordon, M. H. and Griffith, R. E. (1992). Steryl analysis as an aid to the identification of oils in blends. Food Chem 43, 71–78.CrossRefGoogle Scholar
  71. Gordon, M. H. and Miller, L. A. D. (1997). Development of steryl ester analysis for the detection of admixtures of vegetable oils. JAm Oil Chem Soc 74, 505–510.CrossRefGoogle Scholar
  72. Graciani-Constante, E., Colchero Vela, C. and Vazquez Roncero, A. (1980). Estudio de los componentes polares del aceite de oliva por cromatografia liquida de alta eficacia (HPLC). I. Cromatografia de adsorción. Grasas Aceites 31, 85–89.Google Scholar
  73. Grob, K., et al. (1994a). Recognition of adulterated oils by direct analysis of the minor components. Fat Sci Technol 96, 286–290.Google Scholar
  74. Grob, K., et al. (1994b). LC, GC, and MS of sterol dehydration products. Riv Ital Sostanze Grasse 71, 533–538.Google Scholar
  75. Grob, K., et al. (1994c). The detection of adulteration with desterolized oils. Fat Sci Technol 94, 341–345.Google Scholar
  76. Grob, K., et al. (1995). Composition of the sterol dehydration products in refined olive oil. Riv Ital Sostanze Grasse 72, 49–54.Google Scholar
  77. Grob, K., Artho, A. and Mariani, C. (1991). Gekoppelte LC-GC fur die analyse von olivenolen. Fat Sci Technol 93, 494–500.Google Scholar
  78. Grob, K., Artho, A. and Mariani, C. (1992). Determination of refination of edible oils and fats by olefinic degradation products of sterols and squalene, using coupled LC-GC. Fat Sci Technol 94, 394–400.Google Scholar
  79. Grob, K. and Bronz, M. (1994). Analytical problems in determining 3,5-stigmastadiene and campestadiene in edible oils. Riv Rai Sostanze Grasse 71, 291–295.Google Scholar
  80. Grob, K. and Kalin, I. (1991). Attempt for an on-line size exclusion chromatography-gas chromatography method for analyzing pesticide residues in foods. JAgric Food Chem 39, 1950–1953.CrossRefGoogle Scholar
  81. Grob, K. and Lanfranchi, M. (1989). Reproducibility of results from LC-GC of sterols and wax esters in olive oils. JHigh Res Chromatogr 12, 624–626.CrossRefGoogle Scholar
  82. Grob, K, Lanfranchi, M. and Mariani, C. (1990). Evaluation of olive oil through the fatty alcohols, the sterols and their esters by coupled LC-GC. JAm Oil Chem Soc 67, 626–634.CrossRefGoogle Scholar
  83. Gussoni, M., et al. (1993). Application of NMR microscopy to the histochemistry study of olives (Olea europaea L.). Magn Reson Imaging Il, 259–268.Google Scholar
  84. Guth, H. and Grosch, W. (1991). A comparative study of the potent odorant of different virgin olive oils. Fat Sci Technol 93, 335–339.Google Scholar
  85. Gutiérrez, R., et al. (1975). Los métodos organolépticos y cromatograficos en la valoración de los caracteristicas aromaticas del aceite de oliva virgen. Grasas Aceites 26, 21–31.Google Scholar
  86. Gutiérrez, R., et al. (1981). Componentes volatiles en el aroma del aceite de oliva virgen. V. Aceites obtenidos de frutos atrojados. GrasasAceites 32, 299–303.Google Scholar
  87. Gutteridge, C. S., Vallis, L. and MacFie, H. J. H. (1985). Numerical methods in the classification of microorganisms by pyrolysis mass spectrometry. In Computer-Assisted Bacterial Systematics, pp. 369–401. Edited by M. Goodfellow, D. Jones and F. Priest. London: Academic Press.Google Scholar
  88. Irwin, W. J. (1982). Analytical Pyrolysis: A Comprehensive Guide. New York: Marcel Dekker.Google Scholar
  89. Janer del Valle, C. and Vazquez-Roncero, A. (1980). Estudio de los componentes polares del aceite de oliva por cromatografia gaseosa. GrasasAceites 31, 309–316.Google Scholar
  90. Jones, A., et al. (1998). The exploitation of chemometric methods in the analysis of spectroscopic data: application to olive oils. In Lipid Analysis of Oils and Fats, pp. 317–376. Edited by R. J. Hamilton. London: Chapman and Hall.Google Scholar
  91. Kotiaho, T., et al. (1995). Direct determination of styrene and tetrachloroethylene in olive oil by membrane inlet mass spectrometry. JAgric Food Chem 43, 928–930.CrossRefGoogle Scholar
  92. Lanuzza, E and Micali, G. (1997). Determinazione on-line LC-GC-FID di A7-stigmastenolo e A8(14)stigmastenolo in oli alimentari. Riv Ital Sostanze Grasse 74, 509–512.Google Scholar
  93. Lanuzza, F., Micali, G. and Calabrò, G. (1995). Analisi degli steroli nell’olio di oliva mediante transesterificazione ed accoppiamento on-line HPLC-HRGC. Riv Ital Sostanze Grasse 72, 105–109.Google Scholar
  94. Lanzón, A., et al. (1994). The hydrocarbon fraction of virgin olive oil and changes resulting from refining. JAm Oil Chem Soc 71, 285–291.CrossRefGoogle Scholar
  95. Lanzón, A., Cert, A. and Albi, T. (1989). Detección de la presencia de aceite de oliva refinado en el aceite de oliva virgen. Grasas Aceites 40, 385–388.Google Scholar
  96. Lentza-Rizos, Ch. (1994). Monitoring pesticide residues in olive products: organophosphorous insecticides in olives and oil. JAssoc OffAnal Chem Int 77, 1096–1100.Google Scholar
  97. Lentza-Rizos, Ch. and Avramides, E. J. (1990). Determination of residues of fenthion and its oxidative metabolites in olive oil. Analyst 115, 1037–1040.CrossRefGoogle Scholar
  98. Lentza-Rizos, Ch., Avramides, E. J. and Roberts, R. A. (1991). Persistence of fenthion residues in olive oil. Pestic Sci 40, 63–69.CrossRefGoogle Scholar
  99. Limiroli, R., et al. (1995). 1H and 13C NMR characterization of new oleuropein aglycones. J Chem Soc Perkin Trans 1, 1519–1523.Google Scholar
  100. Mannino, S., Cosio, M. S. and Bertuccioli, M. (1993). High performance liquid chromatography of phenolic compounds in virgin olive oils using amperometric detection. Ital JFood Sci 4, 363–370.Google Scholar
  101. Mariani, C., Venturini, S. and Fedeli, E. (1990). Sulla presenza di prodotti alogenati volatili negli oli vergini di oliva. Riv Ital Sostanze Grasse 67, 239–244.Google Scholar
  102. Mariani, C., Venturini, S. and Fedeli, E. (1993). Valutazione di idrocarburi di neoformazione e componenti minori liberi ed esterificati nelle varie classi di oli di oliva. Riv Ital Sostanze Grasse 70, 321–327.Google Scholar
  103. Mastrobattista, G. (1989). La presenza dei clorofluorocarburi negli oli di oliva vergini. Ind Aliment 38, 1183, 1187.Google Scholar
  104. Menichini, E., et al. (1991). Reliability assessment of a gas chromatographic method for polycyclic aromatic hydrocarbons in olive oil. J Chromatogr 555, 211–220.Google Scholar
  105. Meuzelaar, H. L. C., Haverkamp, J. and Hileman, E D. (1982). Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials. Amsterdam: Elsevier Science.Google Scholar
  106. Michie, D., Spiegelhalter, D. J. and Taylor, C. C. (1994). Machine learning: neural and statistical classification. In Ellis Horwood Series in Artificial Intelligence. Edited by J. Campbell. Chichester, UK: Ellis Horwood.Google Scholar
  107. Mínguez-Mosquera, M. I., et al. (1991). Determination of chlorophylls and carotenoids by high-per- formance liquid chromatography during olive lactic fermentation, J Chromatogr 585, 259–266.CrossRefGoogle Scholar
  108. Mínguez-Mosquera, M. I., Gandul-Rojas, B. and Gallardo-Guerrero, L. (1992). Rapid method of quantification of chlorophylls and carotenoids in virgin olive oil by high-performance liquid chromatography. JAgric Food Chem 40, 60–63.CrossRefGoogle Scholar
  109. Montedoro, G., et al. (1989). Influence of the cultivar and pedoclimatic conditions on the virgin olive oil quality. In Flavors and Off-Flavors `89, pp. 881–891. Edited by G. Charalambous. Amsterdam: Elsevier Science.Google Scholar
  110. Montedoro, G., et al. (1992). Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation and quantitative and semiquantitative evaluation by HPLC. JAgric Food Chem 40, 1571–1576.CrossRefGoogle Scholar
  111. Montedoro, G., Bertuccioli, M. and Anichini, E (1978). Aroma analysis of virgin olive oil by head space (volatiles) and extraction (polyphenols) techniques. In Flavor of Foods and Beverages. Chemistry and Technology, pp. 247–281. Edited by G. Charalambous and G. E. Inglett. New York: Academic Press.Google Scholar
  112. Morales, M. T., et al. (1995). Virgin olive oil aroma: Relationship between volatile compounds and sensory attributes by chemometrics. JAgric Food Chem 43, 2925–2931.CrossRefGoogle Scholar
  113. Morales, M. T. and Aparicio, R. (1993). Optimization by mathematical procedures of two dynamic headspace techniques for quantifying virgin olive oil volatiles. Anal Chim Acta 282, 423–431.CrossRefGoogle Scholar
  114. Morales, M. T., Aparicio, R. and Rios, J. J. (1994). Dynamic headspace gas chromatographic method for determining volatiles in virgin olive oil. J Chromatogr 668, 455–462.CrossRefGoogle Scholar
  115. Morales, M. T., Ríos, J. J. and Aparicio, R. (1997). Changes in the volatile composition of virgin olive oil during oxidation: flavours and off-flavours. JAgric Food Chem 45, 2666–2673.CrossRefGoogle Scholar
  116. Morchio, G., de Andreis, R. and Verga, G. R. (1992). Indagine sul contenuto di composti fosforganici presenti negli oli vegetali e in particolare nell’olio di oliva. Riv Ital Sostanze Grasse 69, 147–157.Google Scholar
  117. Moret, S., et al. (1996). Determinazione HPLC degli idrocarburi policiclici aromatici negli oli di oliva: comparazione di alcuni metodi di estrazione e purificazione. Riv Ital Sostanze Grasse 73, 141–146.Google Scholar
  118. Mousa, Y. M. and Gerasopoulos, D. (1996). Effect of altitude on fruit and oil quality characteristics of `Mastoides’ olives. J Sci FoodAgric 71, 345–350.Google Scholar
  119. Nerin, C., et al. (1995). Determination of styrene in olive oil by automatic purge-and-trap system coupled to gas chromatography-mass spectrometry. Chromatographia 41, 216–220.Google Scholar
  120. Nerin, C., Gancedo, P. and Cacho, J. (1993). Determination of styrene in olive oil by coevaporation, cold trap, and GC/MS/SIM. JAgric Food Chem 41, 2003–2005.CrossRefGoogle Scholar
  121. Norman, K. N. T. (1991). Determination of tetrachloroethylene in olive oil by automated headspace gas chromatography. Food Additives Contam 8, 513–516.CrossRefGoogle Scholar
  122. Ntsourankoua, H., Artaud, J. and Guerrere, M. (1994). Etude des alcools triterpeniques d’une huile d’olive vierge et d’une huile de grignons raffinee. Ann Fals Exp Chim 87, 91–107.Google Scholar
  123. Olias, J. M., et al. (1978). Componentos volatiles en el aroma del aceite de oliva virgen. II. Identificación y analisis sensorial de los eluyentes cromatograficos. GrasasAceites 29, 211–218.Google Scholar
  124. Olias, J. M., et al. (1993). Aroma of virgin olive oil: biogenesis of the “green” odor notes. JAgric Food Chem 41, 2368–2373.CrossRefGoogle Scholar
  125. Olias, J. M., et al. (1980). Componentes volatiles en el aroma del aceite de oliva. IV Su evolución influencia en el aroma durante el proceso de maduración de los frutos en las variedad Picual y Hojiblanca. GrasasAceites 31, 391–402.Google Scholar
  126. Overton, S. V. and Manura, J. J. (1995). Analysis of volatile organics in cooking oils by thermal desorption-gas chromatography-mass spectrometry. JAgric Food Chem 43, 1314–1320.CrossRefGoogle Scholar
  127. Pérez-Camino, M. C., et al. (1993). Aceites de oliva virgenes y refinados: Diferencias en componentes menores gliceridicos. Grasas Aceites 44, 91–96.CrossRefGoogle Scholar
  128. Pinsi, E. M., et al. (1997). Phenolic compounds in virgin olive oils. I. Low-wavelength quantitative determination of complex phenols by high-performance liquid chromatography under isocratic elution. J Chromatogr 768, 207–213.CrossRefGoogle Scholar
  129. Pocklington, W. D. (1992). Determination of tetrachloroethylene-Results of a collaborative study and the standardized method. JAm Oil Chem Soc 69, 789–793.CrossRefGoogle Scholar
  130. Precht, D. (1993). Gas chromatography of triacylglycerols and other lipids. In CRC Handbook of Chromatography: Lipids III, pp. 123–138. Edited by H. K. Mangold, K. D. Mukherjee, N. Weber and J. Sherma. Boca Raton, FL: CRC Press.Google Scholar
  131. Proto, M. (1992). Indagine sui contenuti di acido linoleico e di trilinoleina in alcuni oli di semi e di oliva. Ind Aliment 31, 36–38.Google Scholar
  132. Puchades, R., Suescun, A. and Marquieira, A. (1994). Determination of free fatty acids in foods by flow injection. JSci FoodAgric 66, 473–478.CrossRefGoogle Scholar
  133. Rahmani, M. and Saari-Csallany, A. (1991). Chlorophyll and 3-carotene pigments in Moroccan virgin olive oils measured by high-performance liquid chromatography. JAm Oil Chem Soc 68, 672–674.CrossRefGoogle Scholar
  134. Rovellini, E, Azzolini, M. and Cortesi, N. (1997). Tocoferoli e tocotrienoli in oli e grassi vegetali mediante HPLC. Riv Ital Sostanze Grasse 74, 1–5.Google Scholar
  135. Russo, M. V, Goretti, G. and Soriero, A. (1996). Triglyceride analysis with microcapillary gas chromatography columns. Ann Chim 86, 281–291.Google Scholar
  136. Sacchi, R., et al. (1996). A high field ill Nuclear Magnetic Resonance study of the minor components in virgin olive oils. JAm Oil Chem Soc 73, 747–758.CrossRefGoogle Scholar
  137. Safar, M., et al. (1994). Characterization of edible oils, butters and margarines by Fourier transform infrared spectroscopy with attenuated total reflectance. JAm Oil Chem Soc 71, 371–377.CrossRefGoogle Scholar
  138. Salivaras, E. and McCurdy, A. R. (1992). Detection of olive oil adulteration with canola oil from triacylglicerol analysis by reversed-phase high-performance liquid chromatography. JAm Oil Chem Soc 69, 935–938.CrossRefGoogle Scholar
  139. Salter, G. J., et al. (1997). Determination of the geographical origin of Italian extra virgin olive oil using pyrolysis mass spectrometry and artificial neural networks. JAnal Appl Pyrolysis 40–41 159–170.CrossRefGoogle Scholar
  140. Sanchez Saez, J. J., Herce Garraleta, M. D. and Balea Otero, T. (1991). Identification of cinnamic acid ethyl ester and 4-vinylphenol in off-flavour olive oils. Anal Chim Acta 247, 295–297.CrossRefGoogle Scholar
  141. Santinelli, E, Damiani, P. and Christie, W. W. (1992). The triacylglycerol structure of olive oil determination by silver ion high-performance liquid chromatography in combination with stereospecific analysis. JAm Oil Chem Soc 69, 552–556.CrossRefGoogle Scholar
  142. Schuhmann, P. and Schneller, R. (1996). Methode zur qualitativen and quantitativen bestimmung von phytosterinen in pflanzenolen mittels LC-GC off-line. Mitt Gebiete Lebensm Hyg 87, 708–715.Google Scholar
  143. Serani, A. and Piacenti, D. (1994). Identificazione di idrocarburi di neoformazione negli oli vegetali raffinati per mezzo della GC-MS. Riv Ital Sostanze Grasse 71, 477–480.Google Scholar
  144. Servili, M., et al. (1995). Sensory characterization of virgin olive oil and relationship with headspace composition. J Sci Food Agric 67, 61–70.CrossRefGoogle Scholar
  145. Shaw, A. D., et al. (1997). Discrimination of the variety and region of origin of extra virgin olive oil using 13C NMR and multivariate calibration with variable reduction. Anal Chim Acta 348, 357–374.Google Scholar
  146. Snyder, J. M., Frankel, E. N. and Selke, E. (1985). Capillary gas chromatographic analyses of head-space volatiles from vegetable oils. JAm Oil Chem Soc 62, 1675–1679.CrossRefGoogle Scholar
  147. Solinas, M. (1987). Analisi HRGC delle sostanze fenoliche di oli vergini di oliva in relazione al grado di maturazione e alla varietà delle olive. Riv Ital Sostanze Grasse 64, 255–262.Google Scholar
  148. Solinas, M., Angerosa, F. and Cucurachi, A. (1985). Connessione tra i prodotti di neoformazione ossidativa delle sostanze grasse e insorgenza del difetto di rancidità all’esame organolettico. Nota I. Riv Ital Scien Aliment 5, 361–368.Google Scholar
  149. Solinas, M., Angerosa, F. and Cucurachi, A. (1987). Connessione tra i prodotti di neoformazione ossidativa delle sostanze grasse e insorgenza del difetto di rancidità all’esame organolettico. Nota 2. Riv Ital Sostanze Grasse 64, 137–145.Google Scholar
  150. Solinas, M., Angerosa, E and Marsilio, V. (1988). Indagine su alcuni componenti dell’aroma degli oli vergini di oliva in relazione alla varietà delle olive. Riv Ital Sostanze Grasse 65, 361–368.Google Scholar
  151. Solinas, M., Marsilio, V. and Angerosa, E. (1987). Evoluzione di alcuni componenti dell’aroma degli oli vergini di oliva in relazione al grado di maturazione delle olive. Riv Ital Sostanze Grasse 64, 475–480.Google Scholar
  152. Solinas, M. and Cichelli, A. (1981). Sulla determinazione delle sostanze fenoliche dell’olio di oliva. Riv Ital Sci Aliment 10, 159–164.Google Scholar
  153. Solinas, M. and Cichelli, A. (1982). Il dosaggio per GLC e HPLC delle sostanze fenoliche dell’olio di oliva: ruolo ipotetico del tirosolo nell’accertamento della qualità di olio vergine nelle miscele con i rettificati. Riv Ital Sci Aliment 11, 223–230.Google Scholar
  154. Stancher, B., Zonta, F. and Bogoni, P. (1987). Determination of olive oil carotenoids by HPLC. J Micronutr Anal 3, 97–106.Google Scholar
  155. Tateo, E, et al. (1993). New trends in the study of the merits and short-comings of olive oil organoleptic terms in correlation with the GC-MS analysis in the aroma. In Food Flavors Ingredients and Composition, pp. 301–311. Edited by G. Charalambous. Amsterdam: Elsevier Science.Google Scholar
  156. Tateo, E, Cucurachi, S. and Ferrillo, A. (1994). Identificazione per GC/MS di 2,4-dimetilfurano negli oli extra-vergini di oliva. Ind Aliment 33, 15–19.Google Scholar
  157. Tava, A. (1998). Composizione chimica degli esteri a lunga catena nel frutto dell’olivo. Ind Aliment 37, 28–32.Google Scholar
  158. Tsimidou, M., Papadopoulos, G. and Boskou, D. (1992). Determination of phenolic compounds in vir- gin olive oil by reversed-phase HPLC with emphasis on UV detection. Food Chem 44, 53–60.CrossRefGoogle Scholar
  159. Vlahov, G. (1996a). Improved quantitative 13C nuclear magnetic resonance criteria for determination of grades of virgin olive oils. The normal ranges for diglycerides in olive oil. JAm Oil Chem Soc 73, 1201–1203.CrossRefGoogle Scholar
  160. Vlahov, G. (1996b). The structure of triglycerides of monovarietal olive oils. A 13C-NMR comparative study. Fett Lipid 98, 203–205.CrossRefGoogle Scholar
  161. Vrelus, J. J., de Jong, G. J. and Brinkman, U. A. T. (1991). On-line coupling of liquid chromatography, capillary gas chromatography and mass spectrometry for the determination and identification of polycyclic aromatic hydrocarbons in vegetable oils. Chromatographia 31, 113–118.Google Scholar
  162. Weiss, S. H. and Kulikowski, C. (1991). Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Networks, Machine Learning, and Expert System. San Mateo, CA: Morgan Kaufmann.Google Scholar
  163. Zamora, R., Navarro, J. L. and Hidalgo, E J. (1994). Identification and classification of olive oil by High-Resolution 13C Nuclear Magnetic Resonance. JAm Oil Chem Soc 71, 361–364.CrossRefGoogle Scholar
  164. Zupan, J. and Gasteiger, J. (1993). Neural Networks for Chemists: An Introduction. Wheinheim, Germany: Verlagsgesellchaft mbH (VCH).Google Scholar
  165. Zybin, A. and Niemax, K. (1997). GC analysis of chlorinated hydrocarbons in oil and chlorophenols in plant extracts applying element-selective diode laser plasma detection. Anal Chem 69, 755–757.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Giorgio Bianchi
  • Angela De Simone
  • Angela Di Camillo
  • Lucia Giansante
  • Aldo Tava

There are no affiliations available

Personalised recommendations