A Review of Mass Spectrometric Techniques in the Structural Analysis of Native and Derivatized Gangliosides

  • H. Egge
  • J. Peter-Katalinić
Part of the FIDIA Research Series book series (FIDIA, volume 6)

Abstract

Mass spectrometry is especially qualified as an analytical tool because of its very high sensitivity and because of the abundant information provided on structural features of the analyte even if it is present only in minute quantities. Today, its application to the analysis of trace amounts of material is practically indispensable in biological and medical sciences (Burlingame, 1985).

Keywords

Sialic Acid Sialic Acid Residue Chemical Ionization Mass Spectrometry Chain Base Electron Impact Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

MS

mass spectronmetry

EI

electron impact

FD

field description

CI

chenical ionization

SI

secondary ion

FAB

fast atom bombardment

DCI

direct chemical ionzation

TMS

trimethylsilyl

Neu5Ac, or NeuAc

N-acethlNeuramicin acid

Neu5Gc, or NeuGc

N-glycolylneuramicin acid

a.m.u.

arbitrary mass units.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariga T, Yu RK, Suzuki M, Ando S, Myatake T (1982) J Lipid Res 23: 437–442.PubMedGoogle Scholar
  2. Ariga T, Yu RK, Myatake T (1984) J Lipid Res 25: 1096–1101.Google Scholar
  3. Arita M, Iwamori M, Higuchi T, Nagai Y (1983a) J Biochem (Tokyo) 93: 319–322.Google Scholar
  4. Arita M, Iwamori M, Higuchi T, Nagai Y (1983b) J Biochem (Tokyo) 94: 249–256.Google Scholar
  5. Arita M, Iwamori M, Higuchi T, Nagai Y (1984) J Biochem (Tokyo) 95: 971–981.Google Scholar
  6. Barber M. Bordoli RS, Sedgwick RD, Tyler AN (1981) Nature 293: 270–275.CrossRefGoogle Scholar
  7. Beckey HD, Schulten H-R (1975) Angew Chem 87: 425–460.CrossRefGoogle Scholar
  8. Burlingame AL (1985) Mass spectrometry in Health and Life Sciences, Elsevier, Amsterdam, XXI-XXI V.Google Scholar
  9. Carr SA and Reinhold VN (1984) Biomed Mass Spectrom 11: 633–642.PubMedCrossRefGoogle Scholar
  10. Dawson G and Sweely CC (1971) J Lipid Res 12: 56–64.PubMedGoogle Scholar
  11. Dell A, Morris HR, Egge H, v Nicolai H, Strecker G (1983a) Carbohydr Res 115: 41–52.CrossRefGoogle Scholar
  12. Dell A, Oates JE, Morris HR, Egge H (1983b) Int J Mass Spectrom und Ion Phys 46: 415–418.CrossRefGoogle Scholar
  13. Dennis RD, Geyer R, Egge H, Menges H, Stirm S, Wiegandt H (1985) Eur J Biochem 196: 51–58.CrossRefGoogle Scholar
  14. Egge H (1978) Chem Phys Lipids 21: 349–360.CrossRefGoogle Scholar
  15. Egge H, Dabrowski J, Hanfland P, Dell A, Dabrowski U (1982) in: Taketomi T, Nagai Y (eds): New Vistas in Glycolipid Research Plenum Press, New Yprk and London, pp. 33–40.Google Scholar
  16. Egge H, Dell A, v Nicolai H (1983) Arch Biochem Biophys 224: 235–253.PubMedCrossRefGoogle Scholar
  17. Egge H, Dabrowski J, Hanfland P (1984a) Pure und Appl Chem 56: 807–819.CrossRefGoogle Scholar
  18. Egge H, Peter-Katalinic J, Hanfland P (1984b) in: Ledeen RW, Yu RK, Rapport MM, Suzuki K (eds): Ganglioside Structure, Function and Biomedical Potential. Plenum Press, New York, pp. 55–63.CrossRefGoogle Scholar
  19. Egge H, Peter-Katalinic J, Reuter G, Schauer R, Ghidoni R, Sonnino S, Tettamanti G (1985a) Chem Phys Lipids, 37; 127–141.PubMedCrossRefGoogle Scholar
  20. Egge H, Kordowicz M, Peter-Katalinic J, Hanfland P (1985b) J Biol Chem 260: 4927–4935.PubMedGoogle Scholar
  21. Egge H, Peter-Katalinic J (1985c) in: Burlingame AL (ed): Mass Spectrometry in Health and Life Sciences Elsevier, Amsterdam, pp. 401–424.Google Scholar
  22. Fredman P, Mansson J-E, Svennerholm L, Samuelsson B, Pascher I, Pimlott W, Karlsson K-A, Klinghardt GW (1981) Eur J Biochem 116: 553–564.PubMedCrossRefGoogle Scholar
  23. Fukuda MN, Dell A, Oates JE, Wu P, Klock JC, Fukuda M (1985) J Biol Chem 260: 1067–1082.PubMedGoogle Scholar
  24. Hakomori S-I (1964) J Biochem (Tokyo) 55: 205–208.Google Scholar
  25. Handa S, Kushi Y, Kambara H, Shizukuishi K (1983) J Biochem (Tokyo) 93: 315–381.Google Scholar
  26. Handa S, Nakamura K (1984) J Biochem (Tokyo) 95: 1323–1329.Google Scholar
  27. Handa S, Kushi Y (1984) in: Ledeen RW, Yu RK, Rapport MM, Suzuki K (eds): Ganglioside Structure, Function and Biomedical Potential. Plenum Press, New York, pp. 65–73.CrossRefGoogle Scholar
  28. Hanfland P, Kardowicz M, Niermann H, Egge H, Dabrowski U, Peter-Katalinic J, Dabrowski J (1984) Eur J Biochem 145: 531–542.PubMedCrossRefGoogle Scholar
  29. Karlsson K-A, Pascher I, Pimlott W, Samuelsson BE (1974) Biomed Mass Spectrom 1: 49–56.PubMedCrossRefGoogle Scholar
  30. Karlsson K-A (1978) Progr. Chem Fats other Lipids 16: 207–230.CrossRefGoogle Scholar
  31. Kushi Y, Handa S, Kambara H, Shizukuishi K (1983) J Biochem (Tokyo) 94: 1814–1815.Google Scholar
  32. Kushi Y and Handa S (1982) J Biochem (Tokyo) 91: 923–931.Google Scholar
  33. Lin YY and Smith LL (1984) Mass Spectrom Rev 3:. 319–355.Google Scholar
  34. Linscheid M, D’Angona J, Burlingame A-L, Dell A, Ballou CE (1981) Proc Natl Acad Sci USA 78: 1471–1475.PubMedCrossRefGoogle Scholar
  35. Neuenhofer S, Schwarzmann G, Egge H, Sandhoff K (1985) Biochemistry 24: 525–532.PubMedCrossRefGoogle Scholar
  36. Reinhold VN and Carr SA (1982) Anal Chem 45: 490–503.Google Scholar
  37. Reinhold VN and Carr SA (1983) Mass Spectrom Rev 2: 153–221.CrossRefGoogle Scholar
  38. Schulten H-R (1977) in: Glick D (ed): Methods of Biochemical Analysis. Vol. 24, pp. 313–448.Google Scholar
  39. Tanaka Y, Yu R, Ando S, Ariga T, Itoh T (1984) Carbohydr Res 126: 1–14.PubMedCrossRefGoogle Scholar
  40. Williams DH, Bradley C, Bojesen G, Santikarn S, Taylor LEC (1981) J Am Chem Soc 103: 5700.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • H. Egge
    • 1
  • J. Peter-Katalinić
    • 1
  1. 1.Institut für Physiologische ChemieUniversität BonnBonnFederal Republic of Germany

Personalised recommendations