Evaluation of Folylpolyglutamates by Electrophoretic Separation of Fluorodeoxyuridylate-Thymidylate Synthase-Methylenetetrahydrofolate Complexes

  • David G. Priest
  • Marion T. Doig
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 163)

Summary

The chain length of specific reduced folylpolyglutamates has been estimated by incorporation of the 5,10-Tnethylenetetrahydrofolate form of the cofactor into a stable ternary complex with L. casei thymidylate synthase and tritiated fluorodeoxyuridylate followed by electrophoretic separation based on charge differences in complexed polyglutamates. The method is also applicable to tetrahydrofolate polyglutamates after conversion to the active cofactor form by introduction of formaldehyde. The method can be used to analyze less than one pmole of folylpolyglut-amate and can be applied to evaluation of tissue polyglutamates or to monitor relevant enzyme catalyzed reactions.

Keywords

Ternary Complex Electrophoretic Separation Glutamate Residue Longe Chain Length Folate Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used

FdUMP

5-fluoro-2′-deoxyuridine-5′-monophosphate

H4PteGlun

tetrahydrofolate

CH2H4PteGlun

5,10-methylenetetrahydrofolate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.V. Dannenberg, Biochim. Biophys. Acta 473;73 (1977).Google Scholar
  2. 2.
    S.S. Cohen, J.G. Flaks, H.D. Barnes, M.R. Loeb, and J. Lichtenstein, Proc. Natl. Acad. Sci. USA 44;1004 (1958).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Heidelberger, G. Kaldor, K.L. Mukherjee, and P.V. Danenberg, Cancer Res. 20;903 (1960).PubMedGoogle Scholar
  4. 4.
    D.V. Santi, CS. McHenry, and H.H. Sommer, Biochemistry 13;471 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    D.V. Santi, C.S. McHenry, and E.R. Perriard, Biochemistry 13;467, (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    D.G. Priest, C.W. Alford, K.K. Batson, and M.T. Doig, Anal. Bio-chem. 103;51 (1980).Google Scholar
  7. 7.
    R.G. Moran, C.P. Spears, and C. Heidelberger, Proc. Natl. Acad. Sci. USA 76;1456 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    J.L. Aull, J.A. Lyon, and R.B. Dunlap, Microchem. J. 19;210 (1974).CrossRefGoogle Scholar
  9. 9.
    D.G. Priest, K.K. Happel, and M.T. Doig, J. Biochem. Biophys. 3; 201 (1980).CrossRefGoogle Scholar
  10. 10.
    D.G. Priest and M. Mangum, Arch. Biochem. Biophys. 210;118 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    D.G. Priest, K.K. Happel, M. Mangum, J.M. Bednarek, and M.T. Doig, Anal, Biochem. 115:163 (1981).CrossRefGoogle Scholar
  12. 12.
    R.A. Laskey and A.D. Mills, Eur. J. Biochem. 56:335 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    M.M. Bradford, Anal. Biochem. 72:248 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    R.L. Kisliuk, Y. Gaumont, E. Lafer, CM. Baugh, and J.A. Montgomery, Biochemistry 29 :929 (1981).CrossRefGoogle Scholar
  15. 15.
    J.P. Brown, F. Dobbs, E.E. Davidson, and J.M. Scott, Gen. Microbiol. 84:163 (1974).CrossRefGoogle Scholar
  16. 16.
    L. Brody, B. Shane, and E.L.R. Stokstad, Anal. Biochem. 92:501 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    G.I. Leslie and C.M. Baugh, Biochemistry 13:4957 (1974).PubMedCrossRefGoogle Scholar
  18. 18.
    J.J. Pfiffner, D.G. Calkins, E.S. Bloom, and B.L. O’Dell, J. Am. Chem. Soc. 68:1392 (1946).PubMedCrossRefGoogle Scholar
  19. 19.
    J.J. McGuire, P. Hsieh, J.K. Coward, and J.R. Bertino, J. Biol. Chem. 255:5776 (1980).PubMedGoogle Scholar
  20. 20.
    D.J. Fernandes and J.R. Bertino, Proc. Natl. Acad. Sci. USA 77: 5663 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • David G. Priest
    • 1
  • Marion T. Doig
    • 1
  1. 1.Department of BiochemistryMedical University of South CarolinaCharlestonUSA

Personalised recommendations