Putting North America’s End-Pleistocene Megafaunal Extinction in Context

Large-Scale Analyses of Spatial Patterns, Extinction Rates, and Size Distributions
  • John Alroy
Chapter
Part of the Advances in Vertebrate Paleobiology book series (AIVP, volume 2)

Abstract

After many decades of debate, the North American end-Pleistocene megafaunal mass extinction remains a lightning rod of controversy. The extraordinarily divergent opinions expressed in this volume show that no resolution is in sight. My own position is quite heterodox: I believe that the overkill hypothesis, at least in general terms, already has been “proven” as thoroughly as any historical hypothesis can be. All of the key evidence was available years ago, and all of it firmly refutes competing, ecologically oriented hypotheses (Martin, 1967, 1984). The event’s timing, rapidity, selectivity, and geographic pattern all make good sense according to the anthropogenic model, and no sense at all otherwise. To my eyes, this assessment is so clear-cut that further “tests” (e.g., Beck, 1996) are not really necessary.

Keywords

Small Mammal Late Pleistocene Mass Extinction Extinction Rate Large Mammal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alroy, J. 1992. Conjunction among taxonomic distributions and the Miocene mammalian biochronology of the Great Plains. Paleobiology 18: 326–343.Google Scholar
  2. Alroy, J. 1994. Appearance event ordination: a new biochronologic method. Paleobiology 20: 191–207.Google Scholar
  3. Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127: 285–311.CrossRefGoogle Scholar
  4. Alroy, J. 1998a. Diachrony of mammalian appearance events: implications for biochronology. Geology 26: 23–26.CrossRefGoogle Scholar
  5. Alroy, J. 1998b. Cope’s rule and the dynamics of body mass evolution in North American mammals. Science 280: 731–734.PubMedCrossRefGoogle Scholar
  6. Alroy, J. 1998c. Equilibrial diversity dynamics in North American mammals, M. L. McKinney and J. Drake (eds.), Biodiversity Dynamics: Turnover of Populations, Taxa and Communities. pp. 232–287. Columbia University Press, New York.Google Scholar
  7. Alroy, J. In press. Methods for removing sampling biases from diversity curves. Paleobiology.Google Scholar
  8. Archibald, J. D. 1996. Dinosaur Extinction and the End of an Era: What the Fossils Say. Columbia University Press, New York.Google Scholar
  9. Baillie, J., and Groombridge, B. (eds.). 1996. The 1996 IUCN Red List of Threatened Animals. Conservation International, Washington, D.C.Google Scholar
  10. Barnosky, A. D. 1989. The late Pleistocene event as a paradigm for widespread mammal extinction, in: S. K. Donovan (ed.), Mass Extinctions, pp. 235–254. Columbia University Press, New York.Google Scholar
  11. Beck, M. W. 1996. On discerning the cause of late Pleistocene megafaunal extinctions. Paleobiology 22: 91–103.Google Scholar
  12. Berggren, W. A., and Prothero, D. R. 1992. Eocene-Oligocene climatic and biotic evolution: an overview, in:Google Scholar
  13. D. R. Prothero and W. A. Berggren (eds.), Eocene-Oligocene Climatic and Biotic Evolution,pp. 1–28. Princeton University Press, Princeton, N.J.Google Scholar
  14. Bralower, T. J., Thomas, D. J., Zachos, J. C., Hirschmann, M. M., Rohl, U. Sigurdsson, H., Thomas, E., and Whitney, D. L. 1997. High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: is there a causal link? Geology 25: 963–966.Google Scholar
  15. Brown, J. H. 1971. Mammals on mountaintops: nonequilibrium insular biogeography. Am. Nat. 105: 467–478.CrossRefGoogle Scholar
  16. Brown, J. H., and Nicoletto, P. F 1991. Spatial scaling of species composition: body masses of North American land mammals. Am. Nat. 138: 1478–1512.CrossRefGoogle Scholar
  17. Cande, S. C., and Kent, D. V. 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100: 6093–6095.CrossRefGoogle Scholar
  18. Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153–158.CrossRefGoogle Scholar
  19. Coope, G. R. 1995. Insect faunas in Ice Age environments: why so little extinction?, in: J. H. Lawton and R. M. May (eds.), Extinction Rates, pp. 55–74. Oxford University Press, London.Google Scholar
  20. Damuth, J. 1990. Problems in estimating body masses of archaic ungulates using dental measurements, in: J. Damuth and B. J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, pp. 229–253. Cambridge University Press, London.Google Scholar
  21. Damuth, J., and MacFadden, B. J. (eds.). 1990. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, London.Google Scholar
  22. Dansgaard, W., Johnsen, S., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218–220.CrossRefGoogle Scholar
  23. Diamond, J. M. 1984. Historic extinction: a Rosetta stone for understanding prehistoric extinction equilibria, in: R. S. Martin and R. G. Klein (eds.), Quaternary Extinctions: A Prehistoric Revolution, pp. 824–866. University of Arizona Press, Tucson.Google Scholar
  24. Dwyer, G. S., Cronin, T. M., Baker, P. A., Raymo, M. E., Buzas, J. S., and Correge, T. 1995. North Atlantic deep-water temperature change during late Pliocene and late Quaternary climatic cycles. Science 270:1347–1351.Google Scholar
  25. Eisenberg, J. F. 1981. The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation, and Behavior. University of Chicago Press, Chicago.Google Scholar
  26. Flower, B. P., and Kennett, J. P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108: 537–555.CrossRefGoogle Scholar
  27. Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Syst. Zool 39: 371–382.CrossRefGoogle Scholar
  28. Foote, M. 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology 20: 424–444.Google Scholar
  29. Gingerich, P. D. 1984. Pleistocene extinctions in the context of origination-extinction equilibria, in: P. S. Martin and R. G. Klein (eds.), Quaternary Extinctions: A Prehistoric Revolution, pp. 211–222. University of Arizona Press, Tucson.Google Scholar
  30. Graham, R. W. 1976. Late Wisconsin mammalian faunas and environmental gradients of the eastern United States. Paleobiology 2: 343–350.Google Scholar
  31. Graham, R. W. 1986. Response of mammalian communities to environmental changes during the late Quaternary, in: J. Diamond and T. J. Case (eds.), Community Ecology, pp. 300–313. Harper und Row, New York.Google Scholar
  32. Graham, R. W., and Lundelius, E. L., Jr. 1984. Coevolutionary disequilibrium and Pleistocene extinctions, in: P. S. Martin and R. G. Klein (eds.), Quaternary Extinctions: A Prehistoric Revolution, pp. 223–249. University of Arizona Press, Tucson.Google Scholar
  33. Graham, R. W., Lundelius, E. L., Jr., Graham, M. A., Schroeder, E. K., Toomey, R. S., 111, Anderson, E., Barnosky, A. D., Burns, J. A., Churcher, C. S., Grayson, D. K., Guthrie, R. D., Harington, C. R., Jefferson, G. T., Martin, L. D., McDonald, H. G., Morlan, R. E., Sunken, H. A., Jr., Webb, S. D., Werdelin, L., and Wilson, M. C. 1996. Spatial response of mammals to Late Quaternary environmental fluctuations. Science 272: 1601–1606.PubMedCrossRefGoogle Scholar
  34. Guilday, J. E. 1962. The Pleistocene local fauna of the Natural Chimneys, Augusta County, Virginia. Ann. Carnegie Mus. 36:87–122.Google Scholar
  35. Gunnell, G. F 1989. Evolutionary history of Microsyopoidea (Mammalia, ?Primates) and the relationship between Plesiadapiformes and Primates. Univ. Mich. Pap. Paleontol. 27: 1–157.Google Scholar
  36. Gunnell, G. F., and Gingerich, P. D. 1996. New hapalodectid Hapalorestes lovei (Mammalia, Mesonychia) from the early middle Eocene of northwestern Wyoming. Contrib. Mus. Paleontol. Univ. Mich. 29: 413–418.Google Scholar
  37. Guthrie, R. D. 1984. Mosaics, allelochemics and nutrients, an ecological theory of late Pleistocene megafaunal extinctions, in: P. S. Martin and R. G. Klein (eds.), Quaternary Extinctions: A Prehistoric Revolution, pp. 259–298. University of Arizona Press, Tucson.Google Scholar
  38. Hall, E. R. 1981. The Mammals of North America. Wiley, New York.Google Scholar
  39. Hibbard, C. W. 1952. Vertebrate fossils from Late Cenozoic deposits of central Kansas. Univ. Kans. Paleontol. Contrib. Vertebr 2: 1–14.Google Scholar
  40. Hibbard, C. W. 1955. The Jinglebob interglacial (Sangamon?) fauna from Kansas and its climatic significance. Contrib. Mus. Paleontol. Univ. Mich. 12:179–228.Google Scholar
  41. Hodell, D. A., Benson, R. H., Kent, D. V., Boersma, A., and Rakic-El Bied, K. 1994. Magnetostratigraphic, bios-tratigraphic, and stable isotope stratigraphy of an Upper Miocene drill core from the Sale Briqueterie (north-western Morocco): a high-resolution chronology for the Messinian stage. Paleoceanography 9: 835–855.CrossRefGoogle Scholar
  42. Holman, J. A. 1995. Pleistocene Amphibians and Reptiles in North America. Oxford University Press, London.Google Scholar
  43. Jackson, J. B. C. 1994. Constancy and change of life in the sea. Philos. Trans. R. Soc. London Ser. B 344: 55–60.CrossRefGoogle Scholar
  44. Kennett, J. P., and Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinc-tions at the end of the Palaeocene. Nature 353: 225–229.CrossRefGoogle Scholar
  45. Koch, P. L., Zachos, J. C., and Gingerich, P. D. 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358: 319–322.CrossRefGoogle Scholar
  46. Kurten, B., and Anderson, E. 1980. Pleistocene Mammals of North America. Columbia University Press, New York.Google Scholar
  47. Legendre, S. 1986. Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata, Montpellier 16:191–212.Google Scholar
  48. Legendre, S., and Roth, C. 1988. Correlation of camassial tooth size and body weight in Recent carnivores (Mammalia). Hist. Biol. 1: 85–98.Google Scholar
  49. Lundelius, E. L., Churcher, C. S., Downs, T., Harington, C. R., Lindsay, E. H. Schultz, G. E., Semken, H. A., Webb, S. D., and Zakrezewski, R. J. 1987. The North American Quaternary sequence, in: M. O. Woodburne (ed.), Cenozoic Mammals of North America: Geochronology and Biostratigraphy,pp. 211–235. University of California Press, Berkeley.Google Scholar
  50. MacFadden, B. J., and Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and car- bon isotopes: a 10 million-year sequence for the Neogene of Florida. J. Vertebr. Paleontol. 16:103–115.Google Scholar
  51. MacPhee, R. D. E., and Marx, P. A. 1997. The 40,000-year plague: humans, hyperdiseases, and first-contact extinctions, in: S. M. Goodman and B. D. Patterson (eds.), Natural Change and Human Impact in Madagascar, pp. 169–217. Smithsonian Institution Press, Washington, D.C.Google Scholar
  52. Martin, R. S. 1967. Prehistoric overkill, in: P. S. Martin and H. E. Wright (eds.), Pleistocene Extinctions: The Search fora Cause, pp. 75–120. Yale University Press, New Haven.Google Scholar
  53. Martin, P. S. 1984. Prehistoric overkill: the global model, in: P. S. Martin and R. G. Klein (eds.), Quaternary Extinctions: A Prehistoric Revolution, pp. 354–403. University of Arizona Press, Tucson.Google Scholar
  54. Meltzer, D. J., and Mead, J. I. 1985. Dating late Pleistocene extinctions: theoretical issues, analytical bias, and substantive results, in: J. I. Mead and D. J. Meltzer (eds.), Environments and Extinctions: Man in Late Glacial North America, pp. 145–172. Center for the Study of Early Man, University of Maine, Orono.Google Scholar
  55. Miller, K. G., Fairbanks, R. G., and Mountain, G. S. 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2: 1–19.CrossRefGoogle Scholar
  56. Muller, D. W., and Hsu, K. J. 1987. Event stratigraphy and paleoceanography in the Fortuna Basin (southeast Spain): a scenario for the Messinian Salinity Crisis. Paleoceanography 2: 679–696.CrossRefGoogle Scholar
  57. Myers, R. A., Barrowman, N. J., Hutchings, J. A., and Rosenberg, A. A. 1995. Population dynamics of exploited fish stocks at low population levels. Science 269:1106–1108.Google Scholar
  58. Overpeck, J. T., Webb, R. S., and Webb, T., III. 1992. Mapping eastern North American vegetation change of the past 18 ka: no-analogs and the future. Geology 20:1071–1074.Google Scholar
  59. Owen-Smith, N. 1987. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13:351–362. Prothero, D. R., and Heaton, T. H. 1996. Faunal stability during the Early Oligocene climatic crash. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127: 257–284.Google Scholar
  60. Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1: 333–342.Google Scholar
  61. Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2: 289–297.Google Scholar
  62. Repenning, C. A. 1987. Biochronology of the microtine rodents of the United States, in: M. O. Woodburne (ed.), Cenozoic Mammals of North America: Geochronology and Biostratigraphy, pp. 236–268. University of Cal-ifornia Press, Berkeley.Google Scholar
  63. Rhodes, R. S., II. 1984. Paleoecology and regional paleoclimatic implications of the Farmdalian Craigmile and Woodfordian Waubonsie mammalian local faunas, southwestern Iowa. Ill. St. Mus. Rep. Invest. 40:1–51.Google Scholar
  64. Routledge, R. D. 1977. On Whittaker’s components of diversity. Ecology 58:1120–1127.Google Scholar
  65. Semken, H. A., Jr. 1996. Stratigraphy and paleontology of the McPherson Equus beds (Sandahl local fauna), McPherson Co., Kansas. Contrib. Mus. Paleontol. Univ. Mich. 20:121–178.Google Scholar
  66. Semken, H. A., Jr. 1974. Micromammal distribution and migration during the Holocene. Am. Mus. Quat. Assoc. Abstr. 3: 25.Google Scholar
  67. Semken, H. A., Jr. 1984. Paleoecology of a late Wisconsinan/Holocene micromammal sequence in Peccary Cave, northwestern Arkansas, in: H. H. Genoways and M. R. Dawson (eds.), Contributions in Quaternary Vertebrate Paleontology: A Volume in Memorial to John E. Guilday, pp. 405–431. Carnegie Museum of Natural History Special Publication No. 8, Pittsburgh.Google Scholar
  68. Sepkoski, J. J., Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4: 223–251.Google Scholar
  69. Sepkoski, J. J., Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293: 435–437.CrossRefGoogle Scholar
  70. Shackleton, N. J. 1995. New data on the evolution of Pliocene climatic variability, in: E. S. Vrba, G. H. Denton, T. C. Partridge, and L. H. Burckle (eds.), Paleoclimate and Evolution, with Emphasis on Human Origins, pp. 242–248. Yale University Press, New Haven.Google Scholar
  71. Stager, J. C., and Mayewski, R A. 1997. Abrupt early to mid-Holocene climatic transition registered at the equator and the poles. Science 276: 1834–1836.CrossRefGoogle Scholar
  72. Steadman, D. W. 1989. Extinctions of birds in eastern Polynesia: a review of the records and comparisons with other Pacific Island Groups. J. Archaeol. Sci. 16: 177–205.CrossRefGoogle Scholar
  73. Stephens, J. J. 1960. Stratigraphy and paleontology of a Late Pleistocene basin, Harper County, Oklahoma. Bull. Geol. Soc. Am. 71: 1675–1702.CrossRefGoogle Scholar
  74. Stucky, R. K. 1990. Evolution of land mammal diversity in North America during the Cenozoic, in: H. H. Genoways (ed.), Current Mammalogy, pp. 375–432. Plenum Press, New York.Google Scholar
  75. Taylor, K. C., Mayewski, P. A., Alley, R. B., Brook, E. J., Gow, A. J., Grootes, R. M., Meese, D. A., Saltzman, E. S., Severinghaus, J. P., Twickler, M. S., White, J. W. C., Whitlow, S., and Zielinski, G. A. 1997. The Holocene-Younger Dryas transition recorded at Summit, Greenland. Science 278: 825–827.CrossRefGoogle Scholar
  76. Valentine, J. W., and Jablonski, D. 1991. Biotic effects of sea level change: the Pleistocene test. J. Geophys. Res. 96: 6873–6878.CrossRefGoogle Scholar
  77. Valentine, J. W., and Jablonski, D. 1993. Fossil communities: compositional variation at many time scales, in: R. E. Ricklefs and D. Schluter (eds.), Species Diversity in Ecological Communities: Historical and Geographical Perspectives pp. 341–349. University of Chicago Press, Chicago.Google Scholar
  78. Van Valkenburgh, B., and Janis, C. M. 1993. Historical diversity patterns in North American large herbivores and carnivores, in: R. E. Ricklefs and D. Schluter (eds.), Species Diversity in Ecological Communities: Historical and Geographical Perspectives, pp. 330–340. University of Chicago Press, Chicago.Google Scholar
  79. Webb, S. D. 1984. Ten million years of mammal extinction in North America, in: R S. Martin and R. G. Klein (eds.), Quaternary Extinctions: A Prehistoric Revolution, pp. 189–210. University of Arizona Press, Tucson. Wilf, P. 1997. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23: 373–390.Google Scholar
  80. Wilf, R, Wing, S. L., Greenwood, D. R., and Greenwood, C. L. 1998. Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology 26: 203–206.CrossRefGoogle Scholar
  81. Wilson, D. E., and Reeder, D. M. 1993. Mammal Species of the World. Smithsonian Institution Press, Washington, D.C.Google Scholar
  82. Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 115: 117–155.CrossRefGoogle Scholar
  83. Wolfe, J. A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Am. Sci. 66: 694–703.Google Scholar
  84. Wolfe, J. A. 1992. Climatic, floristic, and vegetational changes near the Eocene/Oligocene boundary in North America, in: D. R. Prothero and W. A. Berggren (eds.), Eocene-Oligocene Climatic and Biotic Evolution, pp. 421–436. Princeton University Press, Princeton N.J.Google Scholar
  85. Wolfe, J. A., Schorr“, H. E., Forest, C. E., and Molnar, P. 1997. Paleobotanical evidence for high altitudes in Nevada during the Miocene. Science 276: 1672–1675.Google Scholar
  86. Wood, H. E., 2nd, Chaney, R. W., Clark, J., Colbert, E. H., Jepsen, G. L., Reeside, J. B., Jr., and Stock, C. 1941. Nomenclature and correlation of the North American continental Tertiary. Bull. Geol. Soc. Am. 52: 1–48.Google Scholar
  87. Woodburne, M. O. 1987. Cenozoic Mammals of North America: Geochronology and Biostratigraphy. University of California Press, Berkeley.Google Scholar
  88. Woodburne, M. 0., and Swisher, C. C., III. 1995. Land mammal high resolution geochronology, intercontinental overland dispersals, sea-level, climate, and vicariance, in: W. A. Berggren, D. V. Kent, and J. Hardenbol (eds.), Geochronology, lime Scales and Global Stratigraphie Correlations: A Unified Temporal Framework for an Historical Geology, pp. 335–365. SEPM ( Society for Sedimentary Geology ), Special Publication 54.Google Scholar
  89. Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography 9: 353–387.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • John Alroy
    • 1
  1. 1.Department of PaleobiologySmithsonian InstitutionUSA

Personalised recommendations