Phylogenetic, Geographical, and Temporal Analysis of Female Reproductive Trade-Offs in Drosophilidae

  • William T. Starmer
  • Michal Polak
  • Scott Pitnick
  • Shane F. McEvey
  • J. Stuart F. Barker
  • Larry L. Wolf
Chapter
Part of the Evolutionary Biology book series (EBIO, volume 33)

Abstract

The fact that reproductive effort often shows trade-offs with other necessary functions and features of living organisms has been recognized for centuries. Darwin (1872, pg. 142) gives credit to Geoffroy St. Hilaire and Goethe for proposing the law of “Compensation or Balancement of Growth” and ascribes the following quote to Goethe, “In order to spend on one side, nature is forced to economize on the other side.” The essence of this law is captured in modern theories and syntheses (Lack, 1947; Cody, 1966; Smith and Fretwell, 1974; Stearns, 1976, 1977, 1992) that emphasize time, energy budgets, and physiological, genetic and phylogenetic associations that govern the form of compensation that results in a trade-off.

Keywords

Clutch Size Larval Habitat North American Species Isofemale Line Reproductive Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, M., 1989, Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  2. Atkinson, W. D., 1979, A comparison of reproductive strategies of domestic species of Drosophila. J. Anim. Ecol. 48: 53–64.CrossRefGoogle Scholar
  3. Avelar, T., 1993, Egg size in Drosophila: standard unit of investment or variable response to environment? The effect of temperature. J. Insect Physiol. 39: 283–289.CrossRefGoogle Scholar
  4. Avelar, T., Rocha Pité, M. T., 1989, Egg size and number in Drosophila subobscura under semi-natural conditions. Evol. Biol. 3: 37–48.Google Scholar
  5. Bernardo, J., 1996, The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretation. Am. Zool. 36: 216–236.Google Scholar
  6. Berrigan, D., 1991, The allometry of egg size and number in insects. Oikos 60: 313–321.CrossRefGoogle Scholar
  7. Beverley, S. M., Wilson, A. C., 1982, Molecular evolution in Drosophila and the higher Diptera. I. Micro-complement fixation studies of a larval hemolymph protein. J. Mol. Evol. 18: 251–264.PubMedCrossRefGoogle Scholar
  8. Beverley, S. M., Wilson, A. C., 1984, Molecular evolution in Drosophila and the higher Diptera. II. A time scale for fly evolution. J. Mol. Evol. 21: 1–13.PubMedCrossRefGoogle Scholar
  9. Bock, I. R., 1976, Drosophilidae of Australia I. Drosophila (Inseceta: Diptera). Australian Journal of Zoology. Suppl. Ser. 40: 1–105.Google Scholar
  10. Boulétreau-Merle, J., Allemand, R., Cohet, Y., David, J. R., 1982, Reproductive strategy in Drosophila melanogaster: significance of a genetic divergence between temperate and tropical populations. Oecologia 53: 323–329.CrossRefGoogle Scholar
  11. Brockelman, W. Y., 1975, Competition, the fitness of offspring, and optimal clutch size. Am. Nat. 109: 677–699.CrossRefGoogle Scholar
  12. Caccone, A., Gleason, J. M., Powell, J. R., 1992, Complementary DNA-DNA hybridization in Drosophila. J. Mol. Evol. 34: 130–140.Google Scholar
  13. Carlson, K. A., Nusbaum, T. J., Rose, M. R., Harshman, L. G., 1998, Oocyte maturation and ovariole number in lines of Drosophila melanogaster selected for postponed senescence. Functional Ecology 12: 514–520.CrossRefGoogle Scholar
  14. Carson, H. L., Kaneshiro, K. Y., 1976, Drosophila of Hawaii: systematics and ecological genetics. Ann. Rev. Ecol. Syst. 7: 311–346.CrossRefGoogle Scholar
  15. Carson, H. L., Okada, T., 1982, Drosophilidae of New Guinea. pp. 675–687, in: Biogeography and ecology of New Guinea (J. L. Gressitt, ed., Monogr. Bio. Vol. 42 (2) W. Junk, The Hague.Google Scholar
  16. Chen, P. S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., Bohlen, P, 1988, A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54: 291–298.Google Scholar
  17. Cody, M. L., 1966, A general theory of clutch size. Evolution 20: 174–184.CrossRefGoogle Scholar
  18. Darwin, C., 1872, The Origin of Species. Mentor Edition, Penguin Inc., NY.Google Scholar
  19. David, J. R., 1970, Le nombre d’ovarioles chez la Drosophila: relation avec la fecondite et valeur adaptive. Arch. Zool. Exp. Gén. 111: 357–370.Google Scholar
  20. DeSalle, R., 1992, The phylogenetic relationships of flies in the family Drosophilidae deduced from mtDNA sequences. Mol. Phylog. Evol. 1: 31.CrossRefGoogle Scholar
  21. Eberhard, W. G., 1996, Female control: sexual selection by cryptic female choice. Princeton, NJ: University Press.Google Scholar
  22. Felsenstein, J., 1985, Phylogenies and the comparative method. Am. Nat. 125: 1–15.CrossRefGoogle Scholar
  23. Gasser, M., Kaiser, M., Berrigan, D., Stearns, S. C., 2000, Life history correlates of evolution under high and low adult mortality. Evolution 54: 1260–1272.PubMedGoogle Scholar
  24. Grimaldi, D. A., 1990, A phylogenetic, revised classification of genera in the Drosophilidae ( Diptera ). Bulletin of the American Museum of Natural History. 197: 1–139.Google Scholar
  25. Grimaldi, D., James, A. C., Jaenike, J., 1992, Systematics and modes of reproductive isolation in the holarctic Drosophila testacea species group (Diptera: Drosophildae). Ann. Entomol. Soc. Am. 85: 671–685.Google Scholar
  26. Hansen, T. F., Martins, E. P., 1996, Translation between microevolutionary process and macroevolutionary patterns: The correlation structure of interspecific data. Evolution 50: 1404–1417.CrossRefGoogle Scholar
  27. Harvey, P. H., Pagel, M. D., 1991, The comparative method in evolutionary biology. Oxford University Press, Oxford.Google Scholar
  28. Herndon, L. A., Wolfner, M. F., 1995, A Drosophila seminal fluid protein, Acp26Aa, stimulates egg-laying in females for one day following mating. Proc. Natl. Acad. Sci. USA 92: 10114–10118.Google Scholar
  29. Hirshfield, M. F., Tinkle, D. W., 1975, Natural selection and the evolution of reproductive effort. Proc. Natl. Acad. Sci. USA 72: 2227–2231.PubMedCrossRefGoogle Scholar
  30. Holland, B., Rice, W. R., 1998, Chase-away sexual selection: antagonistic seduction versus resistance. Evolution 52: 1–7.CrossRefGoogle Scholar
  31. Kalb, J. M., DiBenedetto, A. J., Wolfner, M. E, 1993, Probing the function of Drosophila melanogaster accessory glands by directed cell ablation. Proc. Natl. Acad. Sci. USA 90: 8093–8097.PubMedCrossRefGoogle Scholar
  32. Kambysellis, M. P., Heed, W. B., 1971, Studies of oogenesis in natural populations of Drosophilidae. I. Relation of ovarian development and ecological habitats of the Hawaiian species. Am. Nat. 105: 31–49.CrossRefGoogle Scholar
  33. Kambysellis, M. E, Starmer, W. T., Smathers, G., Heed, W. B., 1979, Studies of oogenesis in natural populations of Drosophilidae. II. Significance of microclimatic changes on oogenesis of D. mimica. Am. Nat. 115 (1): 67–91.CrossRefGoogle Scholar
  34. Kambysellis, M. E, Ho, K.-E, Craddock, R. M., Piano, E, Parisi, M., Cohen, J., 1995, Pattern of ecological shifts in the diversification of Hawaiian Drosophila inferred from a molecular phylogeny. Current Biology 5: 1129–1139.PubMedCrossRefGoogle Scholar
  35. Kermack, K. A., Haldane, J. B. S., 1951, Organic correlation and allometry. Biometrika 37: 30.Google Scholar
  36. King, R. C., 1970, Ovarian development in Drosophila melanogaster. Academic Press, New York.Google Scholar
  37. King, R. C., Sang, J. H., 1959, Oogenesis in adult Drosophila melanogaster. VIII. The role of folic acid in oogenesis. Growth 23: 37–53.PubMedGoogle Scholar
  38. Kwiatowski, J., Skarecky, D., Bailey, K., Ayala, E J., 1994, Phylogeny of Drosophila and related genera inferred from the nucleotide sequence of the Cu, Zn Sod gene. J. Mol. Evol. 38: 443–454.PubMedCrossRefGoogle Scholar
  39. Lack, D., 1947, The significance of clutch size. Ibis 89: 302–352.CrossRefGoogle Scholar
  40. Lloyd, D. G., 1987, Selection of offspring size and other size-versus-number strategies. Am. Nat. 129: 800–817.CrossRefGoogle Scholar
  41. McEvey, S. E, Barker, J. S. E, 2001, Scaptodrosophila aclinata: A new Hibiscus flower-breeding species related to S. hibisci (Diptera: Drosophilidae). Rec. Aust. Mus. 53: 255–262.CrossRefGoogle Scholar
  42. McGinley, M. A., Temme, D. H., and Geber, M. A., 1987, Parental investment in offspring in variable environments: theoretical and empirical considerations. Am. Nat. 118: 370398.Google Scholar
  43. Montague, J. R., 1984, The ecology of Hawaiian flower-breeding drosophilids. 1. Selection in the larval habitat. Am. Nat. 124: 712–722.CrossRefGoogle Scholar
  44. Montague, J. R., 1989, The ecology of Hawaiian flower-breeding drosophilids. 2. Adult dispersions and reproductive ecology. Am. Nat. 133: 71–82.CrossRefGoogle Scholar
  45. Montague, J. R., Mangan, R. L., Starmer, W. T., 1981, Reproductive allocation in the Hawaiian Drosophilidae: egg size and number. Am. Nat. 118: 865–871.CrossRefGoogle Scholar
  46. Parker, G. A., Begon, M., 1986, Optimal egg size and clutch size: effects of environment and maternal phenotype. Am. Nat. 128: 573–592.CrossRefGoogle Scholar
  47. Parsons, P. A., Bock, I. R., 1979, The population biology of Australian Drosophila. Ann. Rev. Ecol. Syst. 10: 229–245.CrossRefGoogle Scholar
  48. Pelandakis, M., and Solignac, M., 1993, Molecular phylogeny of Drosophila based on ribosomal RNA sequences. J. Mol. Evol. 37: 525–543.PubMedCrossRefGoogle Scholar
  49. Pitnick, S., Markow, T. A., 1994, Large-male advantages associated with costs of sperm production in Drosophila hydei, a species with giant sperm. Proc. Natl. Acad. Sci. USA 91: 9277–9281.PubMedCrossRefGoogle Scholar
  50. Pitnick, S., Markow, T. A., Spicer, G. S., 1999, Evolution of multiple kinds of female sperm-storage organs in Drosophila. Evolution 53: 1804–1822.Google Scholar
  51. Powell, J. R., 1997, Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press, New York.Google Scholar
  52. Powell, J. R., DeSalle, R., 1995, Drosophila molecular phylogenies and their uses. Evol. Biol. 28: 87–138.CrossRefGoogle Scholar
  53. Purvis, A., Rambaut, A., 1995, Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analyzing comparative data. Comp. Appl. Biosci. 11: 247–251.PubMedGoogle Scholar
  54. Rayner, J. M. V., 1985, Linear relations in biomechanics: the statistics of scaling functions. J. Zool. Lond (A) 206: 415–439.CrossRefGoogle Scholar
  55. Rice, W. R., 1998, Intergenomic conflict, interlocus antagonistic evolution, and the evolution of reproductive isolation, in: Endless forms: species and speciation ( D. J. Howard, S. H. Berlocher, ed.) pp. 261–270. Oxford University Press, Oxford.Google Scholar
  56. Robertson, F. W., Reeve, E. C. R., 1953, Studies in quantitative inheritance IV. The effects of substituting chromosomes from selected strains in different genetic backgrounds in Drosophila melanogaster. Journal of Genetics 51: 586–610.Google Scholar
  57. Russo, C. A. M., Takezaki, N., Nei, M., 1995, Molecular phylogeny and divergence times of Drosophilid species. Mol. Biol. Evol. 12: 391–404.PubMedGoogle Scholar
  58. Sargent, R. C., Taylor, P. D., Gross, M. R., 1987, Parental care and the evolution of egg size in fishes. Am. Nat. 129: 32–46.CrossRefGoogle Scholar
  59. Schwarzkopf, L., Blows, M. W., Caley, M. J., 1999, Life-history consequences of divergent selection on egg size in Drosophila melanogaster. Am. Nat. 154: 333–340.CrossRefGoogle Scholar
  60. Sinervo, B., Doughty, E, Huey, R. B., Zamudio, K.,1992, Allometric engineering: a causal analysis of natural selection on offspring size. Science (Washington, D. C.) 258: 1927–1930.Google Scholar
  61. Smith, C. C., Fretwell, S. D., 1974, The optimal balance between size and number of offspring. Am. Nat. 108: 499–506.CrossRefGoogle Scholar
  62. Spicer, G. S., 1988, Molecular evolution among some Drosophila species groups as indicated by two-dimensional electrophoresis. J Mol. Evol. 27: 250–260.PubMedCrossRefGoogle Scholar
  63. Spicer, G. S., 1991, Molecular evolution and phylogeny of the Drosophila virilis species group as inferred by two-dimensional electrophoresis. J. Mol. Evol. 1991. 379–394.CrossRefGoogle Scholar
  64. Spicer, G. S., 1992, Reevaluation of the phylogeny of the Drosophila virilis species group (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 85: 11–25.Google Scholar
  65. Spicer, G. S., Jaenike, J., 1996, Phylogenetic analysis of breeding site use and a-amanitin tolerance within the Drosophila quinaria species group. Evolution 50: 2328–2337.CrossRefGoogle Scholar
  66. Spicer, G. S., Pitnick, S., 1996, Molecular systematics of the Drosophila hydei subgroup as inferred from mitochondrial DNA sequences. J. Mol. Evol. 43: 281–286.PubMedCrossRefGoogle Scholar
  67. Starmer, W. T., Wolf, L. L., Barker, J. S. F., Bowles, J. M., Lachance, M. A., 1997, Reproductive characteristics of the flower breeding Drosophila hibisci Bock (Drosophilidae) along a latitudinal gradient in eastern Australia: relation to flower and habitat features. Biol. J. Linn. Soc. 62: 459–473.Google Scholar
  68. Starmer, W. T., Polak, M., Wolf, L. L., Barker, J. S. R, 1998, Reproductive characteristics of the flower breeding Drosophila hibisci Bock (Drosophilidae) along a latitudinal gradient in eastern Australia: genetic and environmental determinants of ovariole number. Evolution 52: 806–815.CrossRefGoogle Scholar
  69. Starmer, W. T., Polak, M., Wolf, L. L., Barker, J. S. F., 2000, Reproductive characteristics of the flower breeding Drosophila hibisci Bock (Drosophilidae) along a latitudinal gradient in eastern Australia: within-population genetic detrminants of ovariole number. Heredity 84: 90–96.PubMedCrossRefGoogle Scholar
  70. Stearns, S. C., 1976, Life-history tactics: a review of ideas. Q. Rev. Biol. 51: 3–47.PubMedCrossRefGoogle Scholar
  71. Stearns, S. C., 1977, The evolution of life history traits: a critique of the theory and a review of the data. Ann. Rev. Ecol. Syst. 8: 145–171.CrossRefGoogle Scholar
  72. Stearns, S. C., 1992, The evolution of life histories. Oxford University Press, Oxford.Google Scholar
  73. Sullivan, D. T., Atkinson, P. W., and Starmer, W. T., 1990, Molecular evolution of the alcohol dehydrogenase genes in the genus Drosophila. Evol. Biol. 24: 107–147.Google Scholar
  74. Throckmorton, L. H., 1962, The problem of phylogeny in the genus Drosophila. Univ. Texas Publ. 6205: 207–343.Google Scholar
  75. Throckmorton, L. H., 1975, The phylogeny, ecology and geography of Drosophila. pp. 421–469, in: Handbook of Genetics, vol. 3 (R. C. King, ed.) Plenum Press, New York.Google Scholar
  76. Vance, R. R., 1973a, On reproductive strategies in marine benthic invertebrates. Am. Nat. 107: 339–352.CrossRefGoogle Scholar
  77. Vance, R. R., 1973b, More on reproductive strategies in marine benthic invertebrates. Am. Nat. 107: 353–361.CrossRefGoogle Scholar
  78. Wasserman, M., 1992, Cytological evolution of the Drosophila repleta species group. pp. 455–552, in: Drosophila inversion polymorphism ( C. B. Krimbas, J. R. Powell, eds.) CRC Press, Boca Raton.Google Scholar
  79. Wayne, M. L., Hackett, J. B., Mackay, T. F. C., 1997, Quantitative genetics of ovariole number in Drosophila melanogaster. I. Segregating variation and fitness. Evolution 51: 1156–1163.CrossRefGoogle Scholar
  80. Wiklund, C., Karlsson, B., Forsberg, J., 1987, Adaptive versus constraint explanations for egg-to-body size relationships in two butterfly families. Am. Nat. 130: 828–838.CrossRefGoogle Scholar
  81. Winkler, D. W., Wallin, K., 1987, Offspring size and number: a life history model linking effort per offspring and total effort. Am. Nat. 129: 708–720.CrossRefGoogle Scholar
  82. Wolf, L. L., Polak, M., Barker, J. S. E, Bowles, J., Starmer, W. T., 2000, Reproductive characteristics of Drosophila hibisci in the Northern Territory, Australia. Biol. J. Linn. Soc. 71: 549–562.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • William T. Starmer
    • 1
  • Michal Polak
    • 2
  • Scott Pitnick
    • 1
  • Shane F. McEvey
    • 3
  • J. Stuart F. Barker
    • 4
  • Larry L. Wolf
    • 1
  1. 1.Department of BiologySyracuse UniversitySyracuseUSA
  2. 2.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA
  3. 3.Australian MuseumSydneyAustralia
  4. 4.Department of Animal ScienceUniversity of New EnglandArmidaleAustralia

Personalised recommendations