Genetic Engineering with Nitrogen Fixation

  • K. T. Shanmugam
  • C. Morandi
  • K. Andersen
  • R. C. Valentine

Abstract

The supply of available nitrogen is a limiting factor in world food production. Green plants do not possess sufficient hereditary traits of their own to be self-sufficient for N-fertilizer. Certain bacteria and blue-green algae are the only organisms known to convert atmospheric nitrogen gas into a form suitable for plant growth, a process called biological nitrogen fixation. In order to manufacture their own supply of N-fertilizer, plants must first attract and somehow domesticate symbiotic soil microbes which have the nitrogen fixation genes which code for the crucial enzyme nitrogenase that catalyzes the synthesis of ammonium ion from the vast reservoir of atmospheric nitrogen gas. Man has learned to harness N2-fixing microorganisms through the domestication and culture of soybeans and other leguminous crops which produce root nodules filled with symbiotic, N2-fixing bacteria. In order to increase world food production, it may be necessary to further exploit these highly beneficial microorganisms. If we are to genetically engineer new hybrid plants which are self-sufficient for N-fertilizer, we must learn to manipulate the hereditary traits responsible for this process. Recent studies on the nature and manipulation of nitrogen fixation genes (Nif) are described in this paper.

Keywords

Nitrogen Fixation Glutamine Synthetase Root Nodule Bacterium Carbamyl Phosphate Tropical Grass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    STREICHER, S.L., GURNEY, E. & VALENTINE, R.C. Proc. NatZ. Acad. Sci. 68: 1174, 1971.CrossRefGoogle Scholar
  2. 2.
    STREICHER, S.L., GURNEY, E. & VALENTINE, R.C. Nature 239: 495, 1972.CrossRefGoogle Scholar
  3. 3.
    BERGERSEN, F.J. & HIPSLEY, E.H. J. Gen. MicrobioZ. 60: 61, 1970.Google Scholar
  4. 4.
    SHANMUGAM, K.T., LOO, A. & VALENTINE, R.C. Biochim. Biophys. Acta 338: 545, 1974.CrossRefGoogle Scholar
  5. 5.
    ST. JOHN, R.T., JOHNSTON, H.M., SEIDMANN, C., GARFINKEL, D., GORDON, J.K., SHAH, V.K. & BRILL, W. J. J. BacterioZ. 121: 759, 1975.Google Scholar
  6. 6.
    DIXON, R.A. & POSTGATE, J.R. Nature 234: 47, 1971.CrossRefGoogle Scholar
  7. 7.
    DIXON, R.A. & POSTGATE, J.R. Nature 237: 102, 1972.CrossRefGoogle Scholar
  8. 8.
    CANNON, F.C., KENNEDY, C.K., POSTGATE, J.R., TUBB, R.S. & DIXON, R.A. In “Symposium on Dinitrogen Fixation” (Ed. W.E. Newton and C.J. Nyman) Washington State Univ. Press, Pullman, Wash. (in press)Google Scholar
  9. 9.
    CLEWELL, D.B. & HELINSKI, D.R. J. BacterioZ 110: 1135, 1972.Google Scholar
  10. 10.
    HERSHFIELD, V., BOYER, H.W., YANOFSKY, C., LOVETT, M.A. & HELINSKI, D.R. Proc. NatZ. Acad. Sci. 71: 3455, 1974.CrossRefGoogle Scholar
  11. 11.
    STREICHER, S.L., SHANMUGAM, K.T., AUSUBEL, F., MORANDI, C. & GOLDBERG, R.B. J. BacterioZ. 120: 815, 1974.Google Scholar
  12. 12.
    TUBB, R.S. Nature 251: 481, 1974.CrossRefGoogle Scholar
  13. 13.
    GINSBURG, A. amp, E.R. In “The Enzymes of Glutamine Metabolism” (Ed. S. Pruisner and E.R. Stadtman) Academic Press, N.Y. 1973, p. 9.Google Scholar
  14. 14.
    WOHLHUETER, R.M., SCHUTT, H. & HOLZER, H. In “The Enzymes of Glutamine Metabolism” (Ed. S. Prusiner and E.R. Stadtman) Academic Press, N.Y. 1973, p. 45.Google Scholar
  15. 15.
    MAGASANIK, B., PRIVAL, M.J., BRENCHLEY, J.E., TYLER, B.M., DELEO, A.B., STREICHER, S.L., BENDER, R.A. & PARIS, C.G. Curr. Top. CeZ ReguZ. 8: 119, 1974.Google Scholar
  16. 16.
    SHANMUGAM, K.T., CHAN, I. & MORANDI, C. Biochim. Biophys. Acta. 408: 101, 1975.CrossRefGoogle Scholar
  17. 17.
    SHANMUGAM, K.T. & VALENTINE, R.C. Proc. NatZ. Acad. Sci. 72: 136, 1975.CrossRefGoogle Scholar
  18. 18.
    HARDY, R.W.F. & HAVELKA, U.D. Science 188: 633, 1975.CrossRefGoogle Scholar
  19. 19.
    VON BÜLOW, J.F.W. & DÖBEREINER, J. Proc. Nati. Acad. Sci. 72: 2389, 1975.CrossRefGoogle Scholar
  20. 20.
    DREWS, G. Arch. Mikrobiol. 51: 186, 1965.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • K. T. Shanmugam
    • 1
  • C. Morandi
    • 1
  • K. Andersen
    • 1
  • R. C. Valentine
    • 1
  1. 1.Depart. of Agronomy and Range ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations