Electron-Hole Pair Creation

  • Ansgar Liebsch
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

In the previous chapters, we focused on electronic excitations at energies where collective surface modes play the dominant role. Electron-hole pair creation of course also occurs, giving rise, for instance, to the width of the monopole and multipole surface plasmons. There exist, however, various other physical phenomena in which low-energy electron-hole pairs, say, up to a few tenths of an eV, represent the main electronic excitation mechanism. Examples are the width of the quasi-elastic peak in electron energy loss measurements, damping of adsorbate vibrations, friction of ions and atoms moving near a metal surface, surface resistivity, etc. Chapter 7 is devoted to these kinds of electronic surface excitations.

Keywords

Electron Energy Loss Spectroscopy Parallel Electric Field Nonlocal Conductivity Adsorbate Vibration Multipole Surface Plasmon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, S.,, and B. N. J. Persson, Phys. Rev. Lett. 50, 2028 (1983).ADSCrossRefGoogle Scholar
  2. Chabal, Y. J., Surf. Sci. Rep. 8, 211 (1988).ADSCrossRefGoogle Scholar
  3. Chance, R. R. A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).CrossRefGoogle Scholar
  4. D’Agliano, E. G., O. Kumar, W. L. Schaich, and H. Suhl, Phys. Rev. B 11, 2122 (1975).Google Scholar
  5. Daly, C., and J. Krim, in Micro/Nanotribology and Its Applicatins, B. Bhushan, ed. ( kluwer, Dordrecht, 1997 ), p. 311.Google Scholar
  6. Eguilyz, A. G., Phys Rev. B 30, 4366 (1984).CrossRefGoogle Scholar
  7. Eguilyz, A. G., Phys Scr. B 36, 651 (1987).Google Scholar
  8. Ferrel, T. L., P. M. Echenique, and R. H. Ritchie, Solid State Commun. 32, 419 (1979).ADSCrossRefGoogle Scholar
  9. Gerlach, E., Phys. Stat. Sol. (b) 121, 757 (1984).ADSCrossRefGoogle Scholar
  10. Gerlach, E., J. Phys. C 19, 4585 (1986).Google Scholar
  11. Harris, J., and R. O. Jones, J. Phys. C 6, 3585 (1973).Google Scholar
  12. Harris, J., and R. O. Jones, J. Phys. C 7’, 3751 (1974).Google Scholar
  13. Hirschmugl, C. J., G. P. Williams, F. M. Hoffmann, and Y. J. Chabal, Phys. Rev. Lett. 65, 480 (1990).ADSCrossRefGoogle Scholar
  14. Holzapfel, C., W. Akemann, and D. Schumacher, Surf. Sci. 227, 123 (1990).ADSCrossRefGoogle Scholar
  15. Ishida, H., Phys. Rev. B 49, 14610 (1994).Google Scholar
  16. Ishida, H., Phys. Rev. B 52, 10819 (1995).CrossRefGoogle Scholar
  17. Krim, J., D. H. Solina, and R. Chiarello, Phys. Rev. Lett. 66, 181 (1991).ADSCrossRefGoogle Scholar
  18. Lang, N. D., and W. Kohn, Phys. Rev. B 7, 3541 (1973).Google Scholar
  19. Langreth, D. C., Phys. Rev. Lett. 54, 126 (1985).ADSCrossRefGoogle Scholar
  20. Liebsch, A., Phys. Rev. Lett. 54, 67 (1985).ADSCrossRefGoogle Scholar
  21. Liebsch, A., Phys. Rev. B 36, 7378 (1987).Google Scholar
  22. Liebsch, A., Phys. Rev. B 55, 13263 (1997).Google Scholar
  23. Lodder, A., J. Phys. F 14, 2943 (1984).Google Scholar
  24. Mahan, G. D., in Collective Properties of Physical Systems, S. Lundqvist, ed. (Nobel symposion 24, 1973 ), p. 164.Google Scholar
  25. Persson, B. N. J., J. Phys. C 11, 4251 (1978).ADSCrossRefGoogle Scholar
  26. Persson, B. N. J., Phys. Rev. B 44, 3277 (1991).ADSCrossRefGoogle Scholar
  27. Persson, B. N. J., and M. Persson, Solid State Commun. 36, 175 (1980).ADSCrossRefGoogle Scholar
  28. Persson, B. N. J., and W. L. Schaich, J. Phys. C 14, 5583 (1981).Google Scholar
  29. Persson, B. N. J., and E. Zaremba, Phys. Rev. B 31, 1863 (1985).Google Scholar
  30. Persson, B. N. J., and A. Nitzan, Surf. Sci. 367, 261 (1996).ADSCrossRefGoogle Scholar
  31. Persson, B. N. J., and A. I. Volokitin, J. Chem. Phys. 103, 8679 (1995).ADSCrossRefGoogle Scholar
  32. Ryberg, R., Surf. Sci. 114, 627 (1982).ADSCrossRefGoogle Scholar
  33. Schaich, W. L., Solid State Commun. 15, 357 (1974).ADSCrossRefGoogle Scholar
  34. Schaich, W. L., Phys. Rev. B 13, 3350 (1976).Google Scholar
  35. Schaich, W. L., and J. Harris, J. Phys. C 11, 65 (1981)Google Scholar
  36. Schumacher, D., Surface Scattering Experiments with Conduction Electrons, Springer Tracts in Modern Physics 128 ( Springer, Berlin, 1993 ).Google Scholar
  37. Sokoloff, J. B., Phys. Rev. B 42, 760 (1990).Google Scholar
  38. Sokoloff, J. B., Phys. Rev. B 52, 5318 (1995).Google Scholar
  39. Sols, F., and F. Flores, Solid State Commun. 42, 687 (1982).ADSCrossRefGoogle Scholar
  40. Sols, F., F. Flores, and N. Garcia, Surf. Sci. 137, 167 (1984).ADSCrossRefGoogle Scholar
  41. Sorbello, R. S., J. Chem. Phys. Solids 42, 309 (1981).ADSCrossRefGoogle Scholar
  42. Volokitin, A. I. , and B. N. J. Persson, in Inelastic Energy Transfer in Interactions with Surfaces and Adsorbates, B. Gumhalter, A. C. Levi, and F. Flores, eds. (World Scientific, Singapore, 1993), p. 217.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ansgar Liebsch
    • 1
  1. 1.Forschungszentrum JülichJülichGermany

Personalised recommendations