Transmission Lines for Conducting Polymers

  • W. John Albery
  • Andrew R. Mount
Chapter

Abstract

Modeling ionic and electronic conduction through membranes, polymer-modified electrodes, and solid-state oxide electrodes has received much recent attention. In particular using transmission lines as circuit elements has been advocated by Rubinstein et al. (1) and Buck.(2) The classical transmission line used by these authors is illustrated in Fig. 4.1. The distributed capacitance connects a resistive line to a wire of zero resistance. Classically previous authors have simply driven the current through the circuit element with the voltage. We show that this is a serious error that undermines much previous work. Furthermore the distributed capacitance is dominated by Nernst and Donnan terms, which describe the layer charging. We develop the correct model and extend it to allow for differential mobility in two rails. We also develop the theory of a polymer where the Donnan exclusion is not complete, so we have ions of both charges present. For conducting polymers we develop an even more complicated model in which the rate of electron transfer in the polymer is limited by electron hops between segments of conducting polymer. We include effects of a charge transfer resistance and double-layer capacitance at either the electrode/polymer or the polymer/electrolyte interface. In our papers(3–6) we describe the detailed mathematics; in Chapter 4 we do not repeat the mathematical arguments but instead concentrate on the results and their implications. We then compare results from theoretical models with experimental results from electrodes coated with polyvinylferrocene and such conducting polymers as polythiophene and polypyrrole. For polyvinylferrocene excellent agreement is found between theoretical and experimental results for the dual-rail transmission line model. For a conducting polymer, such as polypyrrole, we argue that to secure agreement, an extra process, the kinetics of electron transfer at the polymer/electrode interface, must be included.

Keywords

Transmission Line Charge Transfer Resistance Conducting Polymer Circuit Element Impedance Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Rubenstein, E. Sabatini, and J. Rishpon, J. Elchem. Soc 134, 3078 (1987).CrossRefGoogle Scholar
  2. 2.
    R. P. Buck, J. Electroanal. Chem 210, 1 (1986).CrossRefGoogle Scholar
  3. 3.
    W. J. Albery, C. M. Elliott, and A. R. Mount, J. Electroanal. Chem 288, 15 (1990).Google Scholar
  4. 4.
    W. J. Albery and A. R. Mount, J. Chem. Soc. Faraday Trans 89, 327 (1993).CrossRefGoogle Scholar
  5. 5.
    W. J. Albery and A. R. Mount, J. Electroanal. Chem 305, 3 (1991).CrossRefGoogle Scholar
  6. 6.
    W. J. Albery and A. R. Mount, J. Chem. Soc. Faraday Trans 89, 2487 (1993).CrossRefGoogle Scholar
  7. 7.
    J. M. Savéant, J. Electroanal. Chem 201, 211 (1986).CrossRefGoogle Scholar
  8. 8.
    R. P. Buck, J. Electroanal. Chem, 243, 279 (1988).CrossRefGoogle Scholar
  9. 9.
    S. W. Feldberg, J. Am. Chem. Soc 106, 4671 (1984).CrossRefGoogle Scholar
  10. 10.
    A. M. Waller and R. G. Compton, J. Chem. Soc. Faraday Trans 1 85, 977 (1989).CrossRefGoogle Scholar
  11. 11.
    W. J. Albery, M. G. Boutelle, and A. R. Hillman, J. Electroanal. Chem 182, 99 (1985).CrossRefGoogle Scholar
  12. 12.
    A. B. Brown and F. C. Anson, Anal. Chem 49, 1589 (1977).CrossRefGoogle Scholar
  13. 13.
    R. A. Bull, F. R. F. Fan, and A. J. Bard, J. Electrochem. Soc 129, 1009 (1982).CrossRefGoogle Scholar
  14. 14.
    M. E. G. Lyons, Faraday Discuss. Chem. Soc 88, 293 (1989).Google Scholar
  15. 15.
    W. J. Albery, Z. Chen, B. R. Horrocks, A. R. Mount, P. J. Wilson, D. Bloor, A. J. Monkman, and C. M. Elliott, Faraday Discuss. Chem. Soc 88, 247 (1989).CrossRefGoogle Scholar
  16. 16.
    Faraday Discuss. Chem. Soc 88, (1989).Google Scholar
  17. 17.
    G. Wegner and J. Rühe, Faraday Discuss. Chem. Soc 88, 333 (1989).CrossRefGoogle Scholar
  18. 18.
    P. G. Pickup, Faraday Discuss. Chem. Soc 88, 296 (1989).Google Scholar
  19. 19.
    P. Burgmayer and R. W. Murray, J. Phys. Chem 88, 2515 (1984).CrossRefGoogle Scholar
  20. 20.
    B. J. Feldman, P. Burgmeyer, and R. W. Murray, J. Am. Chem. Soc, 107, 872 (1985).CrossRefGoogle Scholar
  21. 21.
    W. J. Albery and A. R. Mount, to be published.Google Scholar
  22. 22.
    M. F. Matthias and O. Haas, J. Phys. Chem 96, 3174 (1992).CrossRefGoogle Scholar
  23. 23.
    X. Ren and P. G. Pickup, J. Chem. Soc. Faraday Trans 89, 321 (1993).CrossRefGoogle Scholar
  24. 24.
    X. Ren and P. G. Pickup, J. Elchem. So 139, 2097 (1992).CrossRefGoogle Scholar
  25. 25.
    X. Ren and P. G. Pickup, J. Phys. Chem 97, 5356 (1993).CrossRefGoogle Scholar
  26. 26.
    X. Ren and P. G. Pickup, J. Phys. Chem 97, 3941 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • W. John Albery
    • 1
  • Andrew R. Mount
    • 2
  1. 1.University CollegeOxfordUK
  2. 2.Department of ChemistryUniversity of EdinburghEdinburghUK

Personalised recommendations