Advertisement

The Concentration Dependence of the Electrical Conductivity of Borate and Silicate Glasses

  • Rudol’f L. Myuller
Chapter

Abstract

The electrical conductivity of glasses is directly dependent on their volume concentration of ionic oxides. The composition determines the structural chemical features of the vitreous state which in its turn has a profound effect on the electrical conductivity of the glass. The electrical conductivity of glass has thus a unique functional dependence on the volume concentration of the ionic structural groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Myuller, Zh. Fiz. Khim., 6:616 (1935);Google Scholar
  2. 1a.
    R. L. Myuller (Müller), Phys. Z. Sowjetunion, 1:407 (1932),Google Scholar
  3. 1b.
    R. L. Myuller (Müller), Acta Physicochim. URSS, 2:103 (1935);Google Scholar
  4. 1c.
    R. J. Maurer, J. Chem. Phys., 9:579 (1941);CrossRefGoogle Scholar
  5. 1d.
    O. L. Anderson and D. A. Stuart, Ind. Eng. Chem., 46:154 (1954).CrossRefGoogle Scholar
  6. 2.
    R. L. Myuller and B. J. Markin, Zh. Fiz. Khim., 5:1272 (1934);Google Scholar
  7. 2a.
    R. L. Myuller (Müller) and B. I. Markin, Acta Physicochim.,URSS, 1:266 (1934).Google Scholar
  8. 3.
    S. A. Shchukarev and R. L. Myuller, Zh. Fiz. Khim., 1:625 (1930);Google Scholar
  9. 3a.
    S. A.. Shchukarev (Schtschukarew) and R. L. Myuller (Müller), Z. Phys. Chem., A150:439 (1930).Google Scholar
  10. 4.
    R. L. Myuller, Zh. Tekhn. Fiz., 25:1868 (1955), • this volume, p. 50.Google Scholar
  11. 5.
    R. L. Myuller, Zh. Tekhn. Fiz., 25:2428 (1955), • this volume, p. 61.Google Scholar
  12. 6.
    R. L. Myuller, Zh. Tekhn. Fiz., 25:246 (1955), • this volume, p. 24.Google Scholar
  13. 7.
    R. L. Myuller, Zh. Tekhn. Fiz., 25:1567 (1955), • this volume, p. 43.Google Scholar
  14. 8.
    M. E. Spaight and J. D. Clark, J. Phys. Chem., 38:833 (1934).CrossRefGoogle Scholar
  15. 9.
    R. L. Myuller (Müller), Phys. Z. Sowjetunion, 1:407 (1932).Google Scholar
  16. 10.
    S. Stegmaier and A. Dietzel, Glastechn. Ber., 18:304 (1940).Google Scholar
  17. 11.
    R. L. Myuller, Zh. Tekhn. Fiz., 25:236 (1955), • this volume, p. 15.Google Scholar
  18. 12.
    R. L. Myuller, Zh. Fiz. Khim., 28:1193 (1954).Google Scholar
  19. 13.
    R. L. Myuller (Müller), Nature, 129:507 (1932).CrossRefGoogle Scholar
  20. 14.
    R. L. Myuller, Uch. Zap. Leningr. Gos. Univ., No. 54, 159 (1940), • this volume, p. 3Google Scholar
  21. 15.
    B. I. Markin, Zh. Tekhn. Fiz., 22:932 (1952).Google Scholar
  22. 16.
    R. L. Myuller, Zh. Fiz. Khim., 28:1954, 2170 (1954).Google Scholar
  23. 17.
    R. L. Myuller, Izv. Akad. Náuk SSSR, Ser. Fiz., 4:607 (1940), • this volume, p. 170.Google Scholar
  24. 18.
    R. L. Myuller, Zh. Fiz. Khim., 6:616 (1935);Google Scholar
  25. 18a.
    R. L. Myuller (Müller), Acta Physicochim., URSS, 2:103 (1935);Google Scholar
  26. 18b.
    R. L. Myuller and B. L Markin, Zh. Fiz. Khim., 7:592 (1936);Google Scholar
  27. 18c.
    R. L. Myuller (Müller) and B. I. Markin, Acta. Physicochim, URSS, 4:471 (1936).Google Scholar
  28. 19.
    A. F. Val’ter, M. A. Gladkikh, and K. I. Martyushov, Zh. Tekhn. Fiz., 10:1593 (1940).Google Scholar
  29. 20.
    G. I. Skanavi, Dielectric Physics, GITTL, Mos cow-Leningrad (1949), p. 280;Google Scholar
  30. 20a.
    A. R. Shul’man, Zh. Tekhn. Fiz., 10:1173 (1940).Google Scholar
  31. 21.
    Ya. I. Frenke’, Z. Phys., 35:657 (1926).Google Scholar
  32. 22.
    A. Ya. Kuznetsov and I. G. Mel’nikova, Zh. Tekhn. Fiz., 24:1204 (1950).Google Scholar
  33. 23.
    E. Seddon, E. Tippett and W. S. Turner, J. Soc. Glass Technol., 16:459 (1932).Google Scholar
  34. 24.
    K. S. Evstrop’ev and N. A. Toropov, Silicon Chemistry and the Physical Chemistry of Silicates, Promstroiizdat, Moscow (1950), p. 325, Fig. 243.Google Scholar
  35. 25.
    K. S. Evstrop’ev, A. Ya Kuznetsov, and I. G. Mel’nikova, Zh. Tekhn. Fiz., 21:104 (1951);Google Scholar
  36. 25a.
    K. S. Evstrop’ev, A. Ya Kuznetsov, and I. G. Mel’nikova, Zh. Fiz. Khim., 25:1318 (1951).Google Scholar
  37. 26.
    J. E. Stanworth, J. Soc. Glass Technol., 32:154 (1948).Google Scholar
  38. 27.
    R. L. Myuller, Zh. Fiz. Khim., 30, 1146 (1956).Google Scholar
  39. 28.
    G. I. Skanavi, Dielectric Physics, GITTL, Moscow-Leningrad, 1949;Google Scholar
  40. 28a.
    J. M. Stevels, Progress in the Theory of the Physical Properties of Glass, New York-Amsterdam-London -Brussels (1948);Google Scholar
  41. 28b.
    O. V. Mazurin, Candidate’s Dissertation in Chemical Science, Leningr. Tekhnol. Inst. (1953).Google Scholar
  42. 29.
    R. L. Myuller and Ts. V. Vainshtein, Zh. Fiz. Khim., 7:364 (1936);Google Scholar
  43. 29a.
    R. L. Myuller (Müller) and Ts. V. Vainshtein (C. W. Wainstein), Acta Physicochim,URSS, 3:465 (1936).Google Scholar
  44. 30.
    R. L. Myuller, Zh. Prikl. Khim., 28:363, 1077 (1955).Google Scholar
  45. 31.
    A. A. Appen, Zh. Tekhn. Fiz., 23:1870 (1953).Google Scholar
  46. 32.
    R. Waldren, Molekulargrössen von Elektrolyten in nichtwässerigen Lösungsmitteln, Dresden—Leipzig (1923);Google Scholar
  47. 32a.
    L. Ebert, Handbuch der Experimentalphysik., Leipzig (1932);Google Scholar
  48. 32b.
    R. Wolf, Angew. Chem., 67:89 (1955);CrossRefGoogle Scholar
  49. 32c.
    C. A. Krauss, J. Phys. Chem., 58:678, 683 (1954).Google Scholar
  50. 33.
    W. Guertler, Z. anorg. Chem., 40:337 (1904).CrossRefGoogle Scholar
  51. 34.
    D. I. Levin, S. P. Zhdanov, and E. A. Porai-Koshits, Izv. Akad. Nauk SSSR, No. 1, p. 31 (1955).Google Scholar
  52. 35.
    J. M. Stevels, Philips Res. Repts., 7:161 (1952).Google Scholar
  53. 36.
    J. Biscoe and B. E. Warren, J. Amer. Ceram. Soc, 21:287 (1938).CrossRefGoogle Scholar
  54. 37.
    C. J. Peddle, J. Soc. Glass Technol., 4:9 (1920).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • Rudol’f L. Myuller
    • 1
  1. 1.Leningrad State UniversityLeningradUSSR

Personalised recommendations