Advertisement

Thermal Ionization and the Current Carrier Mobility in Glass

  • Rudol’f L. Myuller
Chapter

Abstract

Characteristically, vitreous substances have a three-dimensional skeleton of covalently bonded atoms as in silica (SiO4/2) [1]. Such a skeleton, while stabilizing the material mechanically and chemically, also separates and thus weakens the interaction of the polar groups. These groups consist of ionized oxygen, boron or aluminium atoms connected directly by coulomb forces to the metallic cations (M+O”“SiO3/2, M+B-O4/2, and M+Al-O4/2). In contrast to crystals with typical ionic structures, the short-range forces of the covalent bonds predominate in the vitreous bodies in question and determine the short-range order of the atoms in such structural units as SiO4/2, BO3/2, B-O4/2, etc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Myuller, in: The Structure of Glass, Vol. 2, Consultants Bureau, New York (1960), p. 50, • this volume, p. 178,Google Scholar
  2. 2.
    W. M. Latimer, The Oxidation States of the Elements and Their Potentials in Aqueous Solution, 2nd ed., Prentice-Hall, New York (1952).Google Scholar
  3. 3.
    F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levin, and I. Jaffe, Selected Values of Chemical Thermodynamic Properties, Nat. Bur. Stand. Cira, (1952), No. 500.Google Scholar
  4. 4.
    Vedeneev, L. V. Gurvich, V. N. Kondrat’ev, V. A. Medvedev, and E. L. Frankevich, The Energy of the Breaking of Chemical Bonds, the Potentials of Ionization and Electron Affinity, Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar
  5. 5.
    R. L. Myuller, L. A. Baidakov, and Z. U. Borisova, Vestn. Leningr. Gos. Univ., No. 22, Iss. 4, p. 77 (1962).Google Scholar
  6. 6.
    R. L. Myuller, L. A. Baidakov, and Z. U. Borisova, Vestn. Leningr. Gos. Univ. No. 10, Iss. 2. p. 94 (1962), • this volume, p. 143.Google Scholar
  7. 7.
    L. A. Baidakov, Z. U. Borisova, and R. L. Myuller, Zh. Prikl. Khim., 34:2446 (1961), • this volume, p. 133.Google Scholar
  8. 8.
    T. S. Moss, Photoconductivity in the Elements, London (1952).Google Scholar
  9. 9.
    R. L. Myuller, Zh, Prikl. Khim., 35:541 (1962), • this volume, p. 121.Google Scholar
  10. 10.
    Z. U. Borisova, R. L. Myuller, and Chin. Ch’eng-Ts’ai, Zh. Prikl. Khim., 35:774 (1962).Google Scholar
  11. 11.
    E. Mooser and W. B. Pearson, Nature, 190:406 (1961).CrossRefGoogle Scholar
  12. 12.
    R. L. Myuller, Zh. Tekhn. Fiz., 25:1567 (1955), • this volume, p. 43.Google Scholar
  13. 13.
    R. L. Myuller, Zh. Tekhn. Fiz., 25:1566 (1955).Google Scholar
  14. 14.
    R. L. Myuller, Zh. Tekhn. Fiz., 26:2614 (1956), • this volume, p. 79,Google Scholar
  15. 15.
    A. V. Danilov and R. L. Myuller, Zh. Prikl. Khim., 35:2012 (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • Rudol’f L. Myuller
    • 1
  1. 1.Leningrad State UniversityLeningradUSSR

Personalised recommendations