Chemical Features of Polymeric Vitreous Materials and the Nature of the Vitreous State

  • Rudol’f L. Myuller


The vitreous state is a particular case of the amorphous state. It is realized under specific conditions on the transition from the liquid to the solid state. A high viscosity which leads according to Tammann [1] to the retardation of the crystallization process, in addition to forced cooling of the liquid through the melting temperature, facilitate glass formation. The high viscosity is determined physically, according to Kobeko [2], by the long relaxation time of the atomic processes in the liquid system. The long relaxation time makes it possible to obtainthe thermodynamically nonequilibrium vitreous state which is stable at low temperatures. The reason for the different values of the relaxation time in substances differing one from another in chemical composition has not been explained theoretically. At the same time, the tendency to glass formation is intimately connected with the chemical nature of the material. In fact, we know that almost any normally vitreous chemical system can, according to A. A. Lebedev [3], be found under different conditions in the crystalline state, and that systems with typical elementary ionic structural units (halides, alkali and alkali earth oxides, etc.) cannot be obtained in the vitreous state.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Tammann, Kristallisieren und Schmelzen, Leipzig (1903).Google Scholar
  2. 2.
    P. P. Kobeko, Amorphous Substances, Izd. Akad. Nauk SSSR, Moscow (1952).Google Scholar
  3. 3.
    A. A. Lebedev, Tr. Gos. Optich.Inst., Vol. 2, No. 10 (1921)Google Scholar
  4. 3a.
    A. A. Lebedev, Zh. Russk. Fiz.-Khim. Ob-shchestva, 50:1, 57 (1921)Google Scholar
  5. 3b.
    A. A. Lebedev, Izv. Akad. Nauk SSSR, ser. fiz., 4:584 (1940).Google Scholar
  6. 4.
    W. H. Zachariasen, J. Amer. Chem. Soc, 54:3841 (1932)CrossRefGoogle Scholar
  7. 4a.
    W. H. Zachariasen, Phys. Rev., 47:277 (1935).CrossRefGoogle Scholar
  8. 5.
    R. L. Myuller, Izv. Akad. Nauk SSSR, ser. fiz., 4:607 (1940) • this volume, p. 170Google Scholar
  9. 5.
    R. L. Myuller, Zh. Prikl. Khim., 13:479 (194); The Vitreous State and the Electrochemistry of Glass (Doctoral Dissertation), Leningrad (1940).Google Scholar
  10. 6.
    A. Smekal, Angew. Chem., 55:235 (1942; Über die Existenzbedingungen von Glaszustanden. Zur Struktur und Materie der Festkörper, Berlin (1952), p. 223Google Scholar
  11. 6a.
    A. Dietzel, Z. Elektrochem., 48:9 (1942)Google Scholar
  12. 6b.
    A. Dietzel, Naturwiss., 31:25 (1943)CrossRefGoogle Scholar
  13. 6c.
    A. Dietzel, Glastectm. Ber., 22:41 (1948)Google Scholar
  14. 6d.
    Ya. K. Syrkin and M. E. Dyatkina, The Chemical Bond and the Structure of Molecules, Moscow (1946), p. 400.Google Scholar
  15. 6e.
    V. V. Tarasov, Dokl. Akad. Nauk SSSR, 46:117 (1945)Google Scholar
  16. 6f.
    V. V. Tarasov, Dokl. Akad. Nauk SSSR, 58:577 (1947)Google Scholar
  17. 6g.
    V. V. Tarasov, Zh. Fiz. Khim., 24: 111 (1950)Google Scholar
  18. 6h.
    J. E. Stanworth, J. Soc. Glass Technol., 30:56 (1946)Google Scholar
  19. 6i.
    J. E. Stanworth, Glastechn. Ber., 23:299 (1950)Google Scholar
  20. 6j.
    K. H. Sun, J. Amer. Cer. Soc. 30:277 (1947)CrossRefGoogle Scholar
  21. 6k.
    M. L. Huggins and K. H. Sun, J. Soc. Glass Technol., 28:463 (1944)Google Scholar
  22. 6l.
    J. Stevels, Verr. et Refract., 7:91 (1953)Google Scholar
  23. 6m.
    T. Forland and W. A. Weyl, J. Am. Cer. Soc. 32, 269 (1949)CrossRefGoogle Scholar
  24. 6n.
    T. Forland and W. A. Weyl, J. Am. Cer. Soc. 33:186 (1950)CrossRefGoogle Scholar
  25. 6o.
    W. A. Weyl, Colored Glasses, Sheffield (1951).Google Scholar
  26. 7.
    F. Hund, Z. Electrochem., 61:891 (1957).Google Scholar
  27. 8.
    T. Cottrell, The Strength of the Chemical Bond, London (1954).Google Scholar
  28. 9.
    N. V. Belov, in: The Structure of Glass, Vol. 1, Consultants Bureau, New York (1958).Google Scholar
  29. 10.
    A. Winter-Klein, Verr. et Refract., 7:147 (1955); IVth Congress International du Verre, Vm, 1 (1956).Google Scholar
  30. 11.
    Chemist’s Handbook, Vol. II, Goskhimizdat, Moscow—Leningrad (1951).Google Scholar
  31. 12.
    Landolt-Börnstein, Zahlenwerte und Funktionen aus der Physik, Chemie, Astronomie, Geophysik, und Technik, Vol. 1, Atom- und Molekular-physik, Vol. 4, Kristalle, Berlin-Göttingen —Heidelberg (1955).Google Scholar
  32. 13.
    F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levin, and I. Jaffe, Selected Values of Chemical Thermodynamic Properties, Nat. Bur. Stand. Circ, No. 500 (1952).Google Scholar
  33. 14.
    O. L. Anderson and D. A. Stuart, Ind. Eng. Chem., 46:154 (1954).CrossRefGoogle Scholar
  34. 15.
    R. L. Myuller, Zh. Prikl. Khim., 28:363, 1077 (1955).Google Scholar
  35. 16.
    K. Arndt, Z. Electrochem., 13:500 (1907)Google Scholar
  36. 16a.
    K. S. Evstrop’ev, M. M. Skornyakov, and B. A. Pospelov, in: The Physical Chemical Properties of the Triple Systems: NaO—PbO-SiO, Izd. Akad. Nauk SSSR, Moscow-Leningrad (1949)Google Scholar
  37. 16b.
    A. A. Leont’eva, Zh. Fiz. Khim., 24: 798 (1950)Google Scholar
  38. 16c.
    V. T. Slavyanskii, in : The Vitreous State, Izd. Akad. Nauk SSSR, Moscow-Leningrad (1960), p. 328.Google Scholar
  39. 17.
    R. Fowler and E. Guggenheim, Statistical Thermodynamics [in Russian], I. L. Moscow-Leningrad (1949).Google Scholar
  40. 18.
    S. Krogh-Moe, Glastechn. Ber. 32K:VI-18 (1959).Google Scholar
  41. 19.
    R. B. Barnes, Phys. Rev., 39:562 (1932)CrossRefGoogle Scholar
  42. 19a.
    W. Stein, Ann. Phys., 36:462 (1939)CrossRefGoogle Scholar
  43. 19b.
    K. Kol’raush, Combination Scatter Spectra, Russian ed., IL. Moscow (1952), p. 367.Google Scholar
  44. 20.
    W. Eitel, Thermodynamical Methods in Silicate Investigation, New Jersey (1952).Google Scholar
  45. 21.
    N. N. Semenov, Some Problems in Chemical Kinetics and Reaction Capabilities, 2nd ed., Moscow (1958).Google Scholar
  46. 22.
    R. L. Myuller, Zh. Fiz. Khim., 28:2189 (1954).Google Scholar
  47. 23.
    W. Eitel, Physical Chemistry of Silicates, Chicago (1954), pp. 250, 276Google Scholar
  48. 23a.
    G. S. Parks, S. B. Thomas, and W. A. Gilkey, J. Phys. Chem., 34:2028 (1930).CrossRefGoogle Scholar
  49. 24.
    S. W. Hawley, J. Amer. Chem. Soc, 29:1011 (1907)CrossRefGoogle Scholar
  50. 24a.
    R. Frerichs, Fiz. Rev., 72:12 (1947)Google Scholar
  51. 24b.
    R. Frerichs, J. Opt. Soc. Amer., 43:1153 (1953)CrossRefGoogle Scholar
  52. 24c.
    W. A. Fraser, J. Opt. Soc Amer., 43:823 (1953)Google Scholar
  53. 24d.
    G. Dewulf, Rev. Optique, 33:513 (1954)Google Scholar
  54. 24e.
    N. A. Goryunova and B. T. Kolumietz, Zh. Tekhn. Fiz., 25:2070 (1955).Google Scholar
  55. 25.
    W. A. Weyl and E. C. Marboe, Glastechn. Ber., 32K:VI-1 (1959)Google Scholar
  56. 25.
    H. J. L. Trap and J. M. Stevels, Glastechn. Ber., 32K:VI-32 (1959).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • Rudol’f L. Myuller
    • 1
  1. 1.Leningrad State UniversityLeningradUSSR

Personalised recommendations