Electrical Conductivity of Glasses

  • Rudol’f L. Myuller


A study of the physical properties of matter was made somewhat simpler by the establishment of a system of classification according to the state of aggregation; gas, liquid, or solid. Such mechanical properties as the immutability of form, constancy of volume, and ability to flow, can be used as criteria of these subdivisions and the state of aggregation can then be attributed on the basis of the presence or absence of these properties. It is essential to these considerations that the system in question be in a state of thermodynamic equilibrium and it is then possible to evoke general phenomenological principles characteristic of each of these three states of aggregation. Having ennumerated all the stable equilibrium states of matter there remain to be examined the states of aggregation which represent nonequilibrium systems. In particular, the vitreous state does not correspond to any of these states of aggregation and is an effectively distinct, “fourth” state of aggregation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Wagner, Z. Electrochem., 45:1 (1939).Google Scholar
  2. 2.
    N. W. Taylor and S. S. Sole, J. Amer. Chem. Soc, 56:1648 (1934); J. Amer. Ceram. Soc, 18:55 (1935).CrossRefGoogle Scholar
  3. 3.
    A. Winkelmann and O. Schott, Ann. Phys. (Wied.), 51:736 (1894).Google Scholar
  4. 4.
    S. A. Shchukarev and R. L. Myuller, Zh. Fiz. Khim, 1:625 (1930)Google Scholar
  5. 4a.
    R. L. Myuller (Müller), Nature, 129:507 (1932)CrossRefGoogle Scholar
  6. 4b.
    R. L. Myuller and B. I. Markin, Zh. Fiz. Khim; 5:1262, 1272 (1934).Google Scholar
  7. 5.
    R. L. Myuller, Zh. Fiz. Khim., 6:616 (1935).Google Scholar
  8. 6.
    W. Beetz, Ann. Phys. Chem. (Pogg.), 92:462 (1854)Google Scholar
  9. 6a.
    H. Buff, Ann. Chem. Pharm. (Lieb.), 90:257 (1854).CrossRefGoogle Scholar
  10. 7.
    E. Warburg, Ann. Phys. (Wied.), 21:622 (1884).CrossRefGoogle Scholar
  11. 8.
    R. Ambronn, Phys. Z., 14:112 (1913); Ann. Phys., 58:139 (1919).Google Scholar
  12. 9.
    G. Gehlhoff and M. Thomas, Z. techn. Phys., 6:544 (1925).Google Scholar
  13. 10.
    M. LeBlanc and F. Kirschbaum, Z. Physik. Chem., 72:168 (1910).Google Scholar
  14. 11.
    J. Curie, Ann. Chim. Phys., 17:6, 385 (1889).Google Scholar
  15. 12.
    V. V. Vargin, K. S. Evstropev, K. A. Krakau, I. M. Prok, and A. I. Stozharov, The Phys-ico-Chemical Properties of Glass and their Dependence on Composition, Moscow —Leningrad (1937).Google Scholar
  16. 13.
    S. B. Thomas, J. Phys. Chem., 35:2103 (1931).Google Scholar
  17. 14.
    M. E. Spaght and J. D. Clark, J. Phys. Chem., 38:833 (1934).CrossRefGoogle Scholar
  18. 15.
    R. L. Myuller (Müller), Phys. Z. Sowjetunion, 1:407 (1932).Google Scholar
  19. 16.
    E. Seddon, E. J. Tippett, and W. E. S. Turner, J. Soc. Glass TechnoL, 16:459 (1932).Google Scholar
  20. 17.
    B. I. Markin and R. L. Myuller, Zh. Fiz. Khim., 7:592 (1936).Google Scholar
  21. 18.
    H. S. Van Klooster, Z. anorg. Chem., 69:122, 135 (1911).CrossRefGoogle Scholar
  22. 19.
    N. I. Brodskaya and V. S. Tatarinova, Uch. Zap. Leningr. Gos. Univ., No. 54, p. 249(1940).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • Rudol’f L. Myuller
    • 1
  1. 1.Leningrad State UniversityLeningradUSSR

Personalised recommendations