Isolation and Characterization of Genes Involved in Mammalian Excision Repair

  • Jan H. J. Hoeijmakers
  • M. van Duin
  • M. Koken
  • A. Yasui
  • N. G. J. Jaspers
  • A. Westerveld
  • D. Bootsma

Abstract

Repair of randomly occuring DNA injury in mammalian cells must require sophisticated and elaborative systems in view of the wide spectrum of different types of lesions that have to be recognized and removed, the enormous size of the mammalian genome and the complex chromatin structure, that should undergo reversible alterations for repair to take place. The finding of preferential repair of expressed genes as recently uncovered by Hanawalt and coworkers for the removal of pyrimidine dimers (Bohr et al., 1985, Mellon et al. 1986) elegantly illustrates how the cell deals with part of these problems: highest priority is given to repair of the most vital regions in the genome: namely those being used actively and of which transcription is hampered by damage in the template. The very recent discovery that the yeast repair gene RAD6 encodes a ubiquitin conjugating enzyme specific for histons 2A and 2B (Jentsch et al. 1987) and thought to be implicated in chromatin remodelling adds to the picture of tight interactions of repair events and chromatin structure and dynamics.

Keywords

Excision Repair Repair Gene Xeroderma Pigmentosum Complementation Group Deficient Chinese Hamster Ovary Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, J.P., Bond, C.T., Douglass, J. and Herbert, E. 1987, Two mammalian genes transcribed from opposite strands of the same DNA locus, Science 235: 1514–1517.PubMedCrossRefGoogle Scholar
  2. Bohr, V.A., Smith, C.A., Okumoto, D.S. and Hanawalt, P.C. 1985, DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall, Cell 40: 359–369.PubMedCrossRefGoogle Scholar
  3. Cox, B.S., and Parry, J.M. 1968, The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast, Mutat.Res. 6: 37–55.PubMedCrossRefGoogle Scholar
  4. Doolittle, R.F., Johnson, M.S., Husain, I., van Houten, B., Thomas D.C. and Sancar, A. 1986, Domainal evolution of a prokaryotic DNA repair protein and its relationship to active-transport proteins, Nature 323: 451–453.PubMedCrossRefGoogle Scholar
  5. Duin van, M., de Wit, J., Odijk, H., Westerveld, A., Yasui, A., Koken, M.H.M., Hoeijmakers, J.H.J. and Bootsma, D. 1986, Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10, Cell 44: 913–923.PubMedCrossRefGoogle Scholar
  6. Duin van, M., Jansen, J., de Wit, J., Hoeijmakers, J.H.J., Thompson, L.H., Bootsma, D. and Westerveld, A. (1987), Transfection of the cloned human excision repair gene ERCC-1 to UV-sensitive CHO mutants only corrects the repair defect in complementation group 2 mutants, Mutat.Res, in press.Google Scholar
  7. Fischer, E., Keijzer, W., Thielmann, H.W., Popanda, O., Bohnert, E., Edler, L., Jung, E.G. and Bootsma, D. 1985, A ninth complementation group in xeroderma pigmentosum, XP-I, Mutat.Res. 145: 217–225.Google Scholar
  8. Friedberg, E.C. 1985, DNA repair, San Francisco, Freeman and Co.Google Scholar
  9. Friedberg, E.C., Backendorf, C., Burke, J., Collins, A., Grossman, L., Hoeijmakers, J.H.J., Lehmann, A.R., Seeberg, E., van der Schans, G.P. and van Zeeland, A.A. 1987, Molecular aspects of DNA repair, Mutat.Res. 184: 67–86.PubMedCrossRefGoogle Scholar
  10. Henikoff, S., Keene, M.A., Fechtel, K. and Fristrom, J.W., 1986, Gene within a gene: nested Drosophila genes encode unrelated proteins on opposite DNA strands, Cell 44, 3342.CrossRefGoogle Scholar
  11. Hoeijmakers, J.H.J., van Duin, M., Westerveld, A., Yasui, A. and Bootsma, D. 1986, Identification of DNA repair genes in the human genome, Cold Spring Harbor Symp. on Quant. Biol. vol. LI: 91–101.Google Scholar
  12. Hoeijmakers, J.H.J. Odijk, H., and Westerveld, A. 1987a, Differences between rodent and human cell lines in the amount of integrated DNA after transfection, Exp.Cell. Res. 169: 111–119.Google Scholar
  13. Hoeijmakers, J.H.J., Westerveld, A. and Bootsma, D. 1987b, Methods and Strategies for molecular cloning of mammalian DNA repair genes by DNA-mediated gene transfer, In: ‘DNA Repair Vol. 3’. E.C. Friedberg and P.C. Hanawalt eds. (Marcel Dekker Inc., New York) pp. 181–201 in press.Google Scholar
  14. Husain, I., van Houten, B., Thomas., D.C. and Sancar, A. 1986, Sequences of Escherichia coli uvrA gene and protein reveal two potential ATP binding sites, J.Biol.Chem. 261: 4895–4901.Google Scholar
  15. Jentsch, S., McGrath, J.P. and Varshaysky, A. 1987, The yeast DNA repair gene RAD6 encodes a ubiquitin conjugating enzyme, Nature 329, 131–134.PubMedCrossRefGoogle Scholar
  16. Lawrence, C.W. and Christensen, R. 1976, UV mutagenesis in radiation sensitive strains of yeast, Genetics 82: 207232.Google Scholar
  17. Lehmann, A.R. 1985, Use of recombinant DNA techniques in cloning DNA repair genes and in the study of mutagenesis in mammalian cells, Mutat.Res. 150: 61–67.PubMedCrossRefGoogle Scholar
  18. Mellon, I., Bohr, V.A., Smith, C.A. and Hanawalt, P.C. 1986, Preferential DNA repair of an active gene in human cells, Proc.Natl.Acad.Sci.USA 83,: 8878–8882.Google Scholar
  19. Prakash, L. 1976, Effect of genes controlling radiation sensitivity on chemically induced mutations in Saccharomyces cerevisiae, Genetics 83: 285–301.PubMedGoogle Scholar
  20. Prakash, L. 1977, Defective thymidine dimer excision in radiation sensitive mutants RAD10 and RAD16 of Saccharomyces cerevisiae, Mol.Gen.Genet. 152: 125–128.PubMedCrossRefGoogle Scholar
  21. Reynolds, P., Prakash, L., Dumais, D., Perozzi, G. and Prakash, S. 1985, Nucleotide sequence of the RAD10 gene of Saccharomyces cerevisiae, EMBO J 4: 3549–3552.PubMedGoogle Scholar
  22. Sancar, A. and Rupp W.D. 1983, A novel enzyme: Uvr ABC excision nuclease of Escherichia coli cuts a DNA strand at both sides of the damaged region. Cell 33: 249–260.Google Scholar
  23. Sancar, G.B., Sancar, A. and Rupp, W.D. 1984, Sequences of the E.coli uvrC gene and protein, Nucl.Acids Res. 12: 4593–4608.PubMedCrossRefGoogle Scholar
  24. Spencer, C.A., Gietz, R.D. and Hodgetts, R.B. 1986, Overlapping transcription units in the dopa decarboxylase region of Drosophila, Nature 322: 279–281.PubMedCrossRefGoogle Scholar
  25. Staden, R. 1982, An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences, Nucl.Acids Res. 10: 2951–2961.PubMedCrossRefGoogle Scholar
  26. Thompson, L.H., Busch, D.B., Brookman, K.W., Mooney, C.L. and Glaser, P.A. 1981, Genetic diversity of UV-sensitive DNA repair mutants of Chinese hamster ovary cells. Proc.Natl. Acad.Sci.USA. 78: 3734–3737.Google Scholar
  27. Thompson, L.H. and Carrano, A.V. 1983, Analysis of mammalian cell mutagenesis and DNA repair using in vitro selected CHO cell mutants. In: Cellular Responses to DNA Damage, UCLA Symposium on Molecular and Cellular Biology New Series, vol. 11, E.C. Friedberg and B.R. Bridges, eds. ( New York, Alan R. Liss ), pp. 125–143.Google Scholar
  28. Thompson, L.H., Mooney, C.L. and Brookman, K.W. 1985, Genetic complementation between UV-sensitive CHO mutants and xeroderma pigmentosum fibroblasts. Mutat.Res. 150: 423–429.Google Scholar
  29. Weber, C.A., Salazar, E.P., Stewart, S.A. and Thompson, L.H. 1987, Molecular cloning and biological characterization of a human gene, ERCC-2 which corrects the nucleotide excision repair defect in CHO UV5 cells. Mol.Cell.Biol. in press.Google Scholar
  30. Westerveld, A., Hoeijmakers, J.H.J., van Duin, M., de Wit, J., Odijk, H., Pastink, A., Wood, R. and Bootsma, D. 1984, Molecular cloning of a human DNA repair gene, Nature 310: 425–429.PubMedCrossRefGoogle Scholar
  31. Williams, T. and Fried, M. 1986, A mouse locus at which transcription from both DNA strands produces mRNAs complementary at their 3’ ends, Nature 322: 275–279.PubMedCrossRefGoogle Scholar
  32. Wood, R.D. and Burki, H.J. 1982, Repair capability and the cellular age response for killing and mutation induction after UV, Mutat.Res. 95: 505–514.PubMedCrossRefGoogle Scholar
  33. Zdzienicka, M.Z. and Simons, J.W.I.M., 1986, Analysis of repair processes by the determination of the induction of cell killing and mutation induction in two repair deficient Chinese hamster ovary cell lines. Mutat.Res. 166: 59–69.PubMedCrossRefGoogle Scholar
  34. Zdzienicka, M.Z., Roza, L., Westerveld, A., Bootsma, D. and Simons, J.W.I.M. 1987, Biological and biochemical consequences of the human ERCC-1 repair gene after transfection into a repair-deficient CHO cell line, Mutat.Res. 183: 69–74.PubMedCrossRefGoogle Scholar
  35. Zimmermann, F.K. 1968, Enzyme studies on the products of mitotic gene conversion in Saccharomyces cerevisia. Mol.Gen.Genet. 101: 171–184PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jan H. J. Hoeijmakers
    • 1
  • M. van Duin
    • 1
  • M. Koken
    • 1
  • A. Yasui
    • 1
  • N. G. J. Jaspers
    • 1
  • A. Westerveld
    • 1
  • D. Bootsma
    • 1
  1. 1.Dept. of Cell Biology and GeneticsErasmus Univ.RotterdamThe Netherlands

Personalised recommendations