Cancer, Aging, and Endogenous DNA Damage

  • Bruce N. Ames
Chapter

Summary

Endogenous DNA damage from oxidation and methylation is discussed in relation to aging and cancer. Measurement of 8-hydroxydeoxyguanosine (oh8 dG), thymine glycol and thymidine glycol in urine and oh8 dG in DNA is a means of assaying the background level of oxidant-induce DNA damage in vivo. The level of oxidative DNA damage as measured by oh8 dG in normal rat liver is shown to be extensive, especially in mtDNA (1/30,000 bases in nuclear DNA and 1/8,000 bases in mitochondrial DNA). oh8 dG is one of about 20 adducts found on oxidizing DNA, e.g., by radiation. We also discuss three hitherto unrecognized antioxidants in man.

Keywords

Uric Acid Chronic Granulomatous Disease Specific Metabolic Rate Thymine Glycol IARC Scientific Publication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Cutler, Antioxidants, aging, and longevity, in: “Free Radicals in Biology,” Vol. 6, W. A. Pryor, ed., Academic Press, New York (1984).Google Scholar
  2. 2.
    J. R. Totter, Spontaneous cancer and its possible relationship to oxygen metabolism, Proc.Natl. Acad. Sci. USA 77: 1763 (1980).CrossRefGoogle Scholar
  3. 3.
    B. N. Ames, Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases, Science 221: 1256 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    R. L. Saul and B. N. Ames, Background levels of DNA damage in the population, in: “Mechanisms of DNA Damage and Repair: Implications for Carcinogenesis and Risk Assessment,” M. G. Simic, L. Grossman, and A. C. Upton, eds., Plenum Publishing Corp., New York (1986).Google Scholar
  5. 5.
    T. Lindahl, DNA repair enzymes, Annu. Rev. Biochem. 51: 61 (1982).CrossRefGoogle Scholar
  6. 6.
    M. C. Hollstein, P. Brooks, S. Linn, and B. N. Ames, Hydroxymethyluracil DNA glycosylase in mammalian cells, Proc. Natl. Acad. Sci. USA 81: 4003 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Cathcart, E. Schwiers, R. L. Saul, and B. N. Ames, Thymine glycol and thymidine glycol in human and rat urine: A possible assay for oxidative DNA damage, Proc. Natl. Acad. Sci. USA 81: 5633 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    B. N. Ames and R. L. Saul, Cancer, aging, and oxidative DNA damage, in: “Theories of Carcinogenesis,” O. H. Iversen, ed., Hemisphere Publishing Corp., Washington, D.C. (1988).Google Scholar
  9. 9.
    B. N. Ames, R. L. Saul, E. Schwiers, R. Adelman, and R. Cathcart, Oxidative DNA damage as related to cancer and aging: The assay of thymine glycol, thymidine glycol, and hydroxymethyluracil in human and rat urine, in: “Molecular Biology of Aging: Gene Stability and Gene Expression,” R. S. Sohal, L. S. Birnbaum, and R. G. Cutler, eds., Raven Press, New York (1985).Google Scholar
  10. 10.
    R. L. Saul, P. Gee, and B. N. Ames, Free radicals, DNA damage, and aging, in: “Modern Biological Theories of Aging,” H. R. Warner et al., eds., Raven Press, New York (1987).Google Scholar
  11. 11.
    C. von Sonntag, “The Chemical Basis of Radiation Biology,” Taylor and Francis, London (1987).Google Scholar
  12. 12.
    J. Cadet and M. Berger, Radiation-induced decomposition of the purine bases within DNA and related model compounds, Int. J. Radiat. Biol 47: 127 (1985).CrossRefGoogle Scholar
  13. 13.
    R. Adelman, R. L. Saul, and B. N. Ames, Oxidative damage to DNA: Relation to species metabolism rate and life span, Proc. Natl. Acad. Sci. USA 85: 2706 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Peto, S. E. Parish, and R. G. Gray, There is no such thing as ageing, and cancer is not related to it, in: “Age-Related Factors in Carcinogenesis,” A. Likhachev, V. Anismov, and R. Montesano, eds. ( IARC Scientific Publications No. 58 ), International Agency for Research on Cancer, Lyon (1985).Google Scholar
  15. 15.
    R. A. Floyd, J. J. Watson, and P. K. Wong, Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation, Free Rad. Res. Comm. 1: 163 (1986).Google Scholar
  16. 16.
    H. Kasai, P. F. Crain, Y. Kuchino, S. Nishimura, A. Ootsuyama, and H. Tanooka, Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair, Carcinogenesis 7: 1849 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Kuchino, F. Mori, H. Kasai, H. Inoue, S. Iwai, K. Miura, E. Ohtsuka, and S. Nishimura, Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues, Nature 327: 77 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Cundy, R. Kohen, and B. N. Ames, Determination of 8hydroxydeoxyguanosine in human urine: A possible assay for in vivo oxidative DNA damage, in: “Oxygen Radicals in Biology and Medicine,” K. Taylor, M. G. Simic, and J. F. Ward, eds., Plenum Publishing Corp., New York (1988), in press.Google Scholar
  19. 19.
    M. Shigenaga, K. Cundy, and B. N. Ames, manuscript in preparation.Google Scholar
  20. 20.
    C. Richter, J.-W. Park, and B. N. Ames, Normal oxidative damage to mitochondrial and nuclear DNA is extensive, Proc. Natl. Acad. Sci. USA 85: 6465 (1988).PubMedCrossRefGoogle Scholar
  21. 24.
    B. N. Ames, R. Cathcart, E. Schwiers, and P. Hochstein, Uric acid provides an antioxidant defense in humans against oxidant-and radical-caused aging and cancer: A hypothesis, Proc. Natl. Acad. Sci. USA 78: 6858 (1981).PubMedCrossRefGoogle Scholar
  22. 25.
    R. Stocker, Y. Yamamoto, A. F. McDonagh, A. N. Glazer, and B. N. Ames, Bilirubin is an antioxidant of possible physiological importance, Science 235: 1043 (1987).PubMedCrossRefGoogle Scholar
  23. 26.
    R. Stocker, A. N. Glazer, and B. N. Ames, Antioxidant activity of albumin-bound bilirubin, Proc. Natl. Acad. Sci. USA 84: 5918 (1987).PubMedCrossRefGoogle Scholar
  24. 27.
    R. Stocker and B. N. Ames, Potential role of conjugated bilirubin and copper in the metabolism of lipid peroxides in bile, Proc. Natl. Acad. Sci. USA 84: 8130 (1987).PubMedCrossRefGoogle Scholar
  25. 28.
    R. Kohen, Y. Yamamoto, K. Cundy, and B. N. Ames, Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain, Proc. Natl. Acad. Sci. USA 85: 3175 (1988).PubMedCrossRefGoogle Scholar
  26. 29.
    B. Chance, H. Sies, and A. Boveris, Hydroperoxide metabolism in mammalian organs, Phys. Rev. 59: 527 (1979).Google Scholar
  27. 30.
    V. L. Wilson, R. A. Smith, S. Ma, and R. G. Cutler, Genomic 5methyldeoxycytidine decreases with age, J. Biol. Chem. 21: 9948 (1987).Google Scholar
  28. 31.
    B. N. Ames, Measuring oxidative damage in humans: Relation to cancer and ageing, in: “Methods for Detecting DNA Damaging Agents in Humans: Applications in Cancer Epidemiology and Prevention,” H. Bartsch, K. Hemminki, and I. K. O’Neill, eds. ( IARC Scientific Publications No. 89 ), International Agency for Research on Cancer, Lyon (1988).Google Scholar
  29. 32.
    B. N. Ames, The measurement of oxidative damage in humans: Relation to cancer and aging, in: “Medical, Biochemical and Chemical Aspects of Free Radicals 1988,” T. Yoshikawa, ed., Elsevier Science Publishers B.V., Amsterdam (1988), in press.Google Scholar
  30. 33.
    B. N. Ames, Oxidative DNA damage as related to cancer and aging, Mutation Res. (1988), in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Bruce N. Ames
    • 1
  1. 1.Department of BiochemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations