Toward Creating Life in a Test-Tube

  • Martino Rizzotti
Chapter

Abstract

Attempts to dominate minimal life from the conceptual as well as the experimental viewpoints would take advantage of better understanding of the properties of life in general. Reproduction is usually considered as its most basic property, but detailed examination leads us to the conclusion that this property derives from two more basic ones, namely, overproduction and modularity. From the experimental viewpoint, the requirements of a minimal cell are being currently investigated both from subtracting components from the simplest known organism and from adding components to a fully synthetic cell-like object. However, even the concept of a minimal cell is poorly defined.

Keywords

Living Thing Minimal Cell Living Matter Artificial Cell Cell Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bartel D.P., Unrau P.J., Constructing an RNA world, Trends Cell Biol. 9 (1999), M9 — M13.PubMedCrossRefGoogle Scholar
  2. [2]
    Biagini G.A., Bernard C., Primitive anaerobic protozoa: a false concept, Microbiology 146 (2000), 1019–1020.PubMedGoogle Scholar
  3. [3]
    Cho M.K., Magnus D., Caplan A.L., Mcgee D., The Ethics of Genomics Group, Ethical considerations in synthesizing a minimal genome, Science 286 (1999), 2087–2090.PubMedCrossRefGoogle Scholar
  4. [4]
    Colombo L., The biogen: the ultimate living unit, in: “Defining life”, M. Rizzotti ed., University of Padova, Padova 1996, 39–66.Google Scholar
  5. [5]
    Davies P., Physics and life, in: “First steps in the origin of life in the universe”, J. Chela-Flores, T. Owen and F. Raulin eds., Kluwer, Dordrecht 2001, 13–20.CrossRefGoogle Scholar
  6. [6]
    Fleischaker G.R., A few precautionary words concerning terminology, in: “Self-production of supramolecular structures”, G.R. Fleischaker, S. Colonna and P.L. Luisi eds., Kluwer, Dordrecht 1994, 33–41.CrossRefGoogle Scholar
  7. [7]
    Fox S.W., The emergence of life, BasicBooks, New York 1988.Google Scholar
  8. [8]
    Fox S.W., Synthesis of life in the lab? Defining a protoliving system,Quart. Rev. Biol. 66 (1991), 181–185.Google Scholar
  9. [9]
    Fraser C.M., Coauthors, The minimal gene complement of Mycoplasma genitalium, Science 270 (1995), 397–403.PubMedCrossRefGoogle Scholar
  10. [10]
    Ganti T., The essence of the living state, in: “Defining life”, M. Rizzotti ed., University of Padova, Padova 1996, 103–117.Google Scholar
  11. [11]
    Gânti T., Biogenesis itself,J. theor. Biol. 187 (1997), 583–593.Google Scholar
  12. [12]
    Gesteland R.F., Cech T.R., Atkins J.F., The RNA world, 2nd ed., Cold Spring Harbor Lab. Press, Cold Spring Harbor 1999.Google Scholar
  13. [13]
    Hurst L.D., Dawkins R., Life in a test tube, Nature 357 (1992), 198–199.PubMedCrossRefGoogle Scholar
  14. [14]
    Hutchison C.A. III,Peterson S.N., Gill S.R., Cline R.T., White O., Fraser C.M., Smith H.O., Venter J.C., Global transposon mutagenesis and a minimal mycoplasma genome, Science 286 (1999), 2165–2169.PubMedCrossRefGoogle Scholar
  15. [15]
    Kajander E.O., Ciftcioglu N., Nanobacteria: an alternative mechanism for pathogenic intra-and extracellular calcification and stone formation, Proc. Natl. Acad. Sci. USA 95 (1998), 8274–8279.PubMedCrossRefGoogle Scholar
  16. [16]
    Kaneko T., Coauthors, Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II,DNA Res. 3 (1996), 109136.Google Scholar
  17. [17]
    Koch A.L., What size should a bacterium be A question of scale,Annu. Rev. Microbiol. 50 (1996), 317–348.Google Scholar
  18. [18]
    Koonin E.V., Mushegian A.R., Rudd K.E., Sequencing and analysis of bacterial genomes, Current Biology 6 (1996), 404–416.PubMedCrossRefGoogle Scholar
  19. [19]
    Kunin V., A system of two polymerases - a model for the origin of life,Origins Life Evol. Bios. 30 (2000), 459–466.Google Scholar
  20. [20]
    Lahav N., The RNA-world and coevolution hypotheses and the origin of life,Origins Life Evol. Bios. 23 (1993), 329–344.Google Scholar
  21. [21]
    Lee D.H., Granja J.R., Martinez J.A., Severin K., Reza Ghadiri M., A self-replicating peptide, Nature 382 (1996), 525–528.PubMedCrossRefGoogle Scholar
  22. [22]
    Loomis W.F., Four billion years: an essay on the evolution of genes and organisms, Sinauer, Sunderland MA 1988.Google Scholar
  23. [23]
    Luisi P.L., Self-reproduction of micelles and vesicles,Adv. Chem. Phys. 92 (1996), 425–438.Google Scholar
  24. [24]
    Luisi P.L., Self-reproduction of chemical structures and the question of the transition to life, in: “Astronomical and biochemical origins and the search for life in the universe”, C.B. Cosmovici, S. Bowyer and D. Werthimer eds., Ed. Compositori, Bologna 1997, 461–468.Google Scholar
  25. [25]
    Luisi P.L., About various definitions of life,Origins Life Evol. Bios. 28 (1998), 613–622.Google Scholar
  26. [26]
    Luisi P.L., Oberholzer T., Origin of life on Earth: molecular biology in liposomes as an approach to the minimal cell, in: “The bridge between the big bang and biology”, F. Giovannelli ed., CNR special volume, Roma 2001, 345–355.Google Scholar
  27. [27]
    Mahner M., Bunge M., Foundations of biophilosophy, Springer, Berlin 1997.CrossRefGoogle Scholar
  28. [28]
    Maniloff J., The minimal cell genome,Proc. Natl. Acad. Sci. USA 93 (1996), 10004–10007.Google Scholar
  29. [29]
    Margulis L., Schwartz K.V., Five kingdoms, 3rd ed., Freeman, New York 1998.Google Scholar
  30. [30]
    Mcgenity T.J., Gemmel R.T., Grant W.D., Stan-Lotter H., Origins of halophilic microorganisms in ancient salt deposits, Environ. Microbiol. 2 (2000), 243–250.Google Scholar
  31. [31]
    Morowitz H.J., Beginnings of cellular life, Yale Univ. Press, New Haven 1992.Google Scholar
  32. [32]
    Mushegian A., The minimal genome concept,Curr. Op. Genet. Dev. 9 (1999), 709–714.Google Scholar
  33. [33]
    Oberholzer T., Wick R., Luisi P.L., Biebricher C.K., Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell, Biochem. Biophys. Res. Comm. 207 (1995), 250–257.CrossRefGoogle Scholar
  34. [34]
    Oberholzer T., Nierhaus K.H., Luisi P.L., Protein expression in liposomes, Biochem. Biophys. Res. Comm. 261 (1999), 238–241.CrossRefGoogle Scholar
  35. [35]
    Orgel L.E., Unnatural selection in chemical systems, Acc. Chem. Res. 28 (1995), 109–118.Google Scholar
  36. [36]
    Palmer J.D., A single birth of all plastids,Nature 405 (2000), 32–33.Google Scholar
  37. [37]
    Pappelis A.,Bahn P., Grubbs R., Bozzola J., Cohen P., From inanimate macromolecules to the animate protocells,in: “First steps in the origin of life in the universe”, J. Chela-Flores, T. Owen and F. Raulin eds., Kluwer, Dordrecht 2001, 65–68.Google Scholar
  38. [38]
    Rebek J. JR, Synthetic self-replicating molecules, Sci. Am. 271 (1994), 34–40.Google Scholar
  39. [39]
    Rivkina E.M., Gilichinsky D.A., Metabolic activity of permafrost microorganisms, in: “The bridge between the big bang and biology”, F. Giovannelli ed., CNR special volume, Roma 2001, 370–376.Google Scholar
  40. [40]
    Rizzotti M., Early evolution: from the appearance of the first cell to the first modern organisms, Birkhäuser, Basel 2000.Google Scholar
  41. [41]
    Rizzotti M., Precellular organic aggregates: the bridge between the non-living and the living, in: “The bridge between the big bang and biology”, F. Giovannelli ed., CNR special volume, Roma 2001, 321–333.Google Scholar
  42. [42]
    Rizzotti M., Living things are far from equilibrium: which equilibrium,in: “Fundamentals of life”, G. Palyi, C. Zucchi and L. Caglioti eds., Elsevier, Paris, in press.Google Scholar
  43. [43]
    Rizzott M., Are humans the sole producers of artificial,Yearbook on artificial 1, in press.Google Scholar
  44. [44]
    Szostak J.W., Bartel D.P., Lutsl P.L., Synthesizing life, Nature 409 (2001), 387–390.PubMedCrossRefGoogle Scholar
  45. [45]
    Tomita M., Whole-cell simulations,Trends Biotec. 19 (2001), 205–210.Google Scholar
  46. [46]
    Varela F.J., On defining life, in: “Self-production of supramolecular structures”, G.R. Fleischaker, S. Colonna and P.L. Luisi eds., Kluwer, Dordrecht 1994, 23–31.CrossRefGoogle Scholar
  47. [47]
    Vreeland R.H., Rosenzweig W.D., Powers D.W., Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal, Nature 407 (2000), 897–900.PubMedCrossRefGoogle Scholar
  48. [48]
    Welch G.R., The enzymatic basis of information processing in the living cell,BioSystems 38 (1996), 147–153.Google Scholar
  49. [49]
    Wolpert L., The evolution of the cell theory,Curr. Biol. 6 (1996), 225–228.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Martino Rizzotti
    • 1
  1. 1.Dipartimento di BiologiaUniversità di PadovaPadovaItaly

Personalised recommendations