Regulation of Leukocyte Function pp 247-281 | Cite as
Mechanisms of Regulating the Respiratory Burst in Leukocytes
Chapter
Abstract
When leukocytes encounter opsonized microorganisms or a variety of inflammatory stimuli, their utilization of oxygen is substantially enhanced. This phenomenon was first observed as increased oxygen uptake by the stimulated cells (Baldridge and Gerard, 1933; Sbarra and Karnovsky, 1959) and was correlated with the production of hydrogen peroxide (Iyer et al., 1961). Concomitant with the alterations in respiration, enhanced glucose oxidation via the hexose monophosphate shunt occurs as well (Sbarra and Karnovsky, 1959). In recent years, it has become clear that oxygen utilization in activated phagocytic cells can proceed by one electron reduction steps, and that the initial product is probably superoxide anion ( 2 - ) (Babior et al., 1973). Two molecules of 2 - can then interact in a dismutation reaction, resulting in the formation of hydrogen peroxide (H2O2). These reactions are outlined in Eqs. (1) and (2):
$$
{O_2} + {e^ - } \to O_2^ -
$$
(1)
$$
2O_{_2}^ - + 2{H^ + } \to O_2^ - + {H_2}{O_2}
$$
(2)
Keywords
NADPH Oxidase Human Neutrophil Particulate Fraction Phorbol Myristate Acetate Polymorphonuclear Leukocyte
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Agner, K., 1972, Biological effects of hypochlorous acid formed by “MPO” peroxidation in the presence of chloride ions, in: Structure and Function of Oxidation-Reduction Enzymes (A. Akeson and A. Ehrenberg, eds.), Vol. 18, pp. 329–335, Pergamon Press, New York.Google Scholar
- Allen, R. C., Sternholm, R. L., and Steele, R. J., 1972, Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity, Biochem. Biophys. Res. Commun. 47:679.PubMedCrossRefGoogle Scholar
- Alobaidi, T., Naccache, P. H., and Sha’afi, R. I., 1981, Calmodulin antagonists modulate rabbit neutrophil degranulation, aggregation and stimulated oxygen consumption, Biochim. Biophys. Acta 675:316.PubMedCrossRefGoogle Scholar
- Ambruso, D. R., and Johnston, R. B., Jr., 1981, Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions and an enzymatic generating system, J. Clin. Invest. 67:352.PubMedCrossRefGoogle Scholar
- Ambruso, D. R., Altenburger, K. M., and Johnston, R. B., Jr., 1979, Defective oxidative metabolism in newborn neutrophils: Discrepancy between superoxide anion and hydroxyl radical generation, Pediatrics 64:722.PubMedGoogle Scholar
- Ambruso, D. R., Bentwood, B., Henson, P. M., and Johnston, R. B., Jr., 1982a, Decreased hydroxyl radical generation and lactoferrin content in cord blood neutrophils, Pediatr. Res. 16:198A. (Abstr.)Google Scholar
- Ambruso, D. R., Sasada, M., Nishiyama, H., Kubo, A., Komiyama, A., and Allen, R. H., 1982b, Studies of neutrophil function in a patient with specific granule deficiency, Clin. Res. 30:309A. (Abstr.)Google Scholar
- Andrews, P. C., and Babior, B. M., 1983, Endogenous protein phosphorylation by resting and activated human neutrophils, Blood 61:333.PubMedGoogle Scholar
- Babior, B. M., 1978, Oxygen-dependent microbial killing by phagocytes, N. Engl. J. Med. 298:659,721.PubMedCrossRefGoogle Scholar
- Babior, B. M., and Kipnes, R. S., 1977, Superoxide-forming enzyme from human neutrophils: Evidence for a flavin requirement, Blood 50:517.PubMedGoogle Scholar
- Babior, B. M., and Peters, W. A., 1981, The (math)-producing enzyme of human neutrophil. Further properties, J. Biol. Chem. 256:2321.PubMedGoogle Scholar
- Babior, B. M., Kipnes, R. S., and Curnutte, J. T., 1973, Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent, J. Clin. Invest. 52:741.PubMedCrossRefGoogle Scholar
- Babior, B. M., Curnutte, J. T., and Kipnes, R. S., 1975, Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase, J. Lab. Clin. Med. 85:235.PubMedGoogle Scholar
- Babior, B. M., Curnutte, J. T., and McMurrich, B. J., 1976, The particulate superoxide-forming system from human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst, J. Clin. Invest. 58:989.PubMedCrossRefGoogle Scholar
- Badwey, J. A., and Karnovsky, M. L., 1979, Production of superoxide and hydrogen peroxide by an NADH oxidase in guinea pig polymorphonuclear leukocytes. Modulation by nucleotides and divalent cations, J. Biol. Chem. 254:11530.PubMedGoogle Scholar
- Badwey, J. A., Curnutte, J. T., Robinson, J. M., Lazdins, J. K., Briggs, R. T., Karnovsky, M. J., and Karnovsky, M. L., 1980, Comparative aspects of oxidative metabolism of neutrophils from human blood and guinea pig peritonea: Magnitude of the respiratory burst, dependence upon stimulating agents, and localization of the oxidases, J. Cell. Physiol. 105:541.PubMedCrossRefGoogle Scholar
- Badwey, J. A., Curnutte, J. T., Karnovsky, M. L., 1981, cis-Polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils, J. Biol. Chem. 256:12640.PubMedGoogle Scholar
- Badwey, J. A., Curnutte, J. T., Berde, C. B., and Karnovsky, M. L., 1982, Cytochalasin E diminishes the lag phase in the release of superoxide by human neutrophils, Biochem. Biophys. Res. Commun. 106:170.PubMedCrossRefGoogle Scholar
- Baehner, R. L., and Karnovsky, M. L., 1968, Deficiency of reduced nicotinamide adenine dinucleotide oxidase in chronic granulomatous disease, Science 162:1277.PubMedCrossRefGoogle Scholar
- Baehner, R. L., Karnovsky, M. J., and Karnovsky, M. L., 1969, Degranulation of leukocytes in chronic granulomatous disease, J. Clin. Invest. 48:187.PubMedCrossRefGoogle Scholar
- Baldridge, C. W., and Gerard, R. W., 1933, The extra respiration of phagocytosis, Am. J. Physiol. 103:235.Google Scholar
- Barthelemy, A., Paridaens, R., and Schell-Frederick, E., 1977, Phagocytosis-induced 45calcium efflux in polymorphonuclear leukocytes, FEBS Lett. 82:283.PubMedCrossRefGoogle Scholar
- Bender, J. G., McPhail, L. C., and Van Epps, D. E., 1983, Exposure of human neutrophils to chemotactic factors potentiates activation of the respiratory burst enzyme, J. Immunol. 130:2316.PubMedGoogle Scholar
- Berendes, H., Bridges, R. A., and Good, R. A., 1957, A fatal granulomatosus of childhood, Minn. Med. 40:309.PubMedGoogle Scholar
- Borgeat, P., and Samuelsson, B., 1979, Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A231S7, Proc. Natl. Acad. Sci. (USA) 76:2148.CrossRefGoogle Scholar
- Borregaard, N., Staehr-Johansen, K., Taudorff, E., and Wandall, J. H., 1979, Cytochrome b is present in neutrophils from patients with chronic granulomatous disease, Lancet 1:949.PubMedCrossRefGoogle Scholar
- Borregaard, N., Simons, E. R., and Clark, R. A., 1982, Involvement of cytochrome b-245 in the respiratory burst of human neutrophils, Infect. Immun. 38:1301.PubMedGoogle Scholar
- Borregaard, N., Heiple, J. M., Simons, E. R., and Clark, R. A., 1983, Subcellular localization of the b-cytochrome component of the microbicidal oxidase: Translocation during activation, J. Cell. Biol. 97:52.PubMedCrossRefGoogle Scholar
- Boxer, L. A., Yoder, M., Bonsib, S., Schmidt, M., Ho, P., Jersild, R., and Baehner, R. L., 1979, Effects of a chemotactic factor, N-formyl-methionyl peptide on adherence, superoxide anion generation, phagocytosis, and microtubule assembly of human polymorphonuclear leukocytes, J. Lab. Clin. Med. 93:583.Google Scholar
- Boxer, L. A., Coates, T. D., Haak, R. A., Wolach, J., Hoffstein, S., and Baehner, R. L., 1982, Lactoferrin deficiency associated with altered granulocyte function, N. Engl. J. Med. 307:404.PubMedCrossRefGoogle Scholar
- Breton-Gorius, J., Mason, D. Y., Buriot, D., Vilde, J. L., and Griscelli, C., 1980, Lactoferrin deficiency as a consequence of a lack of specific granules in neutrophils from a patient with recurrent infections: Detection by immunoperoxidase staining for lactoferrin and cytochemical electron microscopy, Am. J. Pathol. 99:413.PubMedGoogle Scholar
- Briggs, R. T., Karnovsky, M. L., and Karnovsky, M. J., 1977, Hydrogen peroxide production in chronic granulomatous disease. A cytochemical study of reduced pyridine nucleotide oxidases, J. Clin. Invest. 59:1088.PubMedCrossRefGoogle Scholar
- Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847.PubMedGoogle Scholar
- Chafouleas, J. G., Dedman, J. R., Munjaal, R. P., and Means, A. R., 1979, Calmodulin. Development and application of a sensitive radioimmunoassay, J. Biol. Chem. 254:10262.PubMedGoogle Scholar
- Chaudhry, A. N., Santinga, J. T., and Gabig, T. G., 1982, The subcellular particulate NADPH-dependent (math)-generating oxidase from human blood monocytes: Comparison to the neutrophil system, Blood 60:979.PubMedGoogle Scholar
- Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207:19.PubMedCrossRefGoogle Scholar
- Cockcroft, S., Bennett, J. P., and Gomperts, B. D., 1980, Stimulus-secretion coupling in rabbit neutrophils is not mediated by phosphatidyl inositol breakdown, Nature 288:275.PubMedCrossRefGoogle Scholar
- Cohen, H. J., and Chovaniec, M. E., 1978, Superoxide production by digitonin-stimulated guinea pig granulocytes. The effects of N-ethyl maleimide, divalent cations, and glycolytic and mitochondrial inhibitors on the activation of the superoxide-generating system, J. Clin. Invest. 61:1088.PubMedCrossRefGoogle Scholar
- Cohen, H. J., Chovaniec, M. E., and Davies, W. A., 1980a, Activation of the guinea pig granulocyte NAD(P)H-dependent superoxide generating enzyme: Localization in a plasma membrane enriched particle and kinetics of activation, Blood 55:355.PubMedGoogle Scholar
- Cohen, H. J., Chovaniec, M. E., and Ellis, S. E., 19806, Chlorpromazine inhibition of granulocyte superoxide production, Blood 56:23.Google Scholar
- Cohen, H. J., Newburger, P. E., and Chovaniac, M. E., 1980c, NAD(P)H-dependent superoxide production by phagocytic vesicles from guinea pig and human granulocytes, J. Biol. Chem. 255:6584.PubMedGoogle Scholar
- Cox, J. P., and Karnovsky, M. L., 1973, The depression of phagocytosis by exogenous cyclic nucleotides, prostaglandins, and theophylline, J. Cell Biol. 59:480.PubMedCrossRefGoogle Scholar
- Cramer, E. B., and Gallin, J. I., 1979, Localization of submembranous cations to the leading end of human neutrophils during Chemotaxis, J. Cell. Biol. 82:369.PubMedCrossRefGoogle Scholar
- Crawford, D. R., and Schneider, D. L., 1982, Identification of ubiquinone-50 in human neutrophils and its role in microbicidal events, J. Biol. Chem. 257:6662.PubMedGoogle Scholar
- Cross, A. R., Higson, F. K., Jones, O. T. G., Harper, A.M., and Segal, A.W., 1982, The enzymic reduction and kinetics of oxidation of cytochrome b-245 of neutrophils, Biochem.J. 204:479.PubMedGoogle Scholar
- Cunningham, C. C., DeChatelet, L. R., Spach, P. L, Parce, W., Thomas, M. J., Lees, C. J., and Shirley, P. S., 1982, Identification and quantitation of electron-transport components in human polymorphonuclear neutrophils, Biochim. Biophys. Acta 682:430.PubMedCrossRefGoogle Scholar
- Curnutte, J. T., Kipnes, R. A., and Babior, B. M., 1975, Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the granulocytes of patients with chronic granulomatous disease, N. Engl. J. Med. 293:628.PubMedCrossRefGoogle Scholar
- Curnutte, J. T., Babior, B. M., and Karnovsky, M. L., 1979, Fluoride-mediated activation of the respiratory burst in human neutrophils. A reversible process, J. Clin. Invest. 63:637.PubMedCrossRefGoogle Scholar
- DeChatelet, L. R., 1978, Initiation of the respiratory burst in human polymorphonuclear neutrophils: A critical review, J. Reticuloendothel. Soc. 24:73.PubMedGoogle Scholar
- DeChatelet, L. R., McPhail, L. C., Mullikin, D., and McCall, C. E., 1975a, An isotopic assay for NADPH oxidase activity and some characteristics of the enzyme from human polymorphonuclear leukocytes, J. Clin. Invest. 55:714.PubMedCrossRefGoogle Scholar
- DeChatelet, L. R., Shirley, P. S., Goodson, P. R., and McCall, C.E., 1975b, Bactericidal activity of superoxide anion and of hydrogen peroxide: Investigations employing dialuric acid, a superoxide generating drug, Antimicrob. Agents Chemother. 8:146.PubMedCrossRefGoogle Scholar
- DeChatelet, L. R., Shirley, P. S., and Johnston, R. B., Jr., 1976a, Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes, Blood 47:545.PubMedGoogle Scholar
- DeChatelet, L. R., Shirley, P. S., and McPhail, L. C., 1976b, Normal leukocyte glutathione peroxidase activity in patients with chronic granulomatous disease, J. Pediatr. 89:598.PubMedCrossRefGoogle Scholar
- DeChatelet, L. R., Lees, C. J., and Shirley, P. S., 1982, Separation of superoxide generation from NADP formation in subcellular fractions from human neutrophils, Clin. Res. 30: 363A. (Abstr.)Google Scholar
- Della Bianca, V., Bellavite, P., De Togni, P., Fumarulo, K., and Rossi, F., 1983, Studies on stimulus-response coupling in human neutrophils. I. Role of monovalent cations in the respiratory and secretory response to N-formylmethionylleucylphenylalanine, Biochem. Biophys. Acta 755:497.CrossRefGoogle Scholar
- Dewald, B., Baggiolini, M., Curnutte, J. T., and Babior, B. M., 1979, Subcellular localization of the superoxide-forming enzyme in human neutrophils, J. Clin. Invest. 63:21.PubMedCrossRefGoogle Scholar
- Drath, D. B., and Karnovsky, M. L., 1974, Bactericidal activity of metal-mediated peroxide-ascorbate systems, Infect. Immun. 10:1077.PubMedGoogle Scholar
- English, D., Roloff, J. S., and Lukens, J. N., 1981, Chemotactic factor enhancement of superoxide release from fluoride and phorbol myristate acetate stimulated neutrophils, Blood 58:129.PubMedGoogle Scholar
- Fletcher, M. P., Seligmann, B. E., and Gallin, J. I., 1982, Correlation of human neutrophil secretion, chemoattractant receptor mobilization, and enhanced functional capacity, J. Immunol 128:941.PubMedGoogle Scholar
- Foote, C. S., Abakerli, R. B., Clough, R. L., and Shook, F. C., 1980, On the question of sinlet oxygen production in leukocytes, macrophages and the dismutation of superoxide anion, in: Biological and Clinical Aspects of Superoxide and Superoxide Dismutase (W. H. Bannister and J. V. Bannister, eds.), pp. 222–230, Elsevier-North Holland, New York.Google Scholar
- Foote, C. S., Goyne, T. E., and Lehrer, R. I., 1983, Assessment of chlorination by human neutrophils, Nature 301:715.PubMedCrossRefGoogle Scholar
- Gabig, T. G., 1983, The NADPH-dependent (math)-generating oxidase from human neutrophils. Identification of a flavoprotein component that is deficient in a patient with chronic granulomatous disease, J. Biol. Chem. 258:6352.PubMedGoogle Scholar
- Gabig, T. G., and Babior, B. M., 1979, The (math)-forming oxidase responsible for the respiratory burst in human neutrophils. Properties of the solubilized enzyme, J. Biol. Chem. 254:9070.PubMedGoogle Scholar
- Gabig, T. G., Kipnes, R. S., and Babior, B. M., 1978, Solubilization of the (math) forming activity responsible for the respiratory burst in human neutrophils, J. Biol. Chem. 253:6663.PubMedGoogle Scholar
- Gabig, T. G., Schervish, E. W., and Santinga, J. T., 1982, Functional relationship of the cytochrome b to the superoxide-generating oxidase of human neutrophils, J. Biol. Chem. 257:4114.PubMedGoogle Scholar
- Gallin, E. K., and Gallin, J. I., 1977, Interaction of chemotactic factors with human macrophages: Induction of transmembrane potential changes, J. Cell. Biol. 75:277.PubMedCrossRefGoogle Scholar
- Gallin, J. I., and Rosenthal, A. S., 1974, The regulatory role of divalent cations in human granulocyte Chemotaxis, J. Cell. Biol. 62:594.PubMedCrossRefGoogle Scholar
- Gallin, J. I., Fletcher, M. P., Seligmann, B. E., Hoffstein, S., Cehrs, K., and Mounessa, N., 1982, Human neutrophil specific granule deficiency: A model to assess the role of neutrophil specific granules in the evolution of the inflammatory process response, Blood 59:1317.PubMedGoogle Scholar
- Goetzl, E. J., and Sun, F. F., 1979, Generation of unique monohydroxy-eiscosatetraenoic acids from arachidonic acid by human neutrophils, J. Exp. Med. 150:406.PubMedCrossRefGoogle Scholar
- Goetzl, E. J., Woods, J. M., and Gorman, R. R., 1977, Stimulation of human eosinophil and neutrophil polymorphonuclear leukocyte Chemotaxis and random migration by 12-L-hydroxy-5,8,10,14-eicosatetraenoicacid, J. Clin. Invest. 59:179.PubMedCrossRefGoogle Scholar
- Goetzl, E. J., Brash, A. R., Tauber, A. I., Oates, J. A., and Hubbard, W. C., 1980, Modulation of human neutrophil function by monohydroxy-eicosatetraenoic acids, Immunology 39:491.PubMedGoogle Scholar
- Goldstein, I. M., Roos, D., Weissmann, G., and Kaplan, H. B., 1976, Influence of corticosteroids on human polymorphonuclear leukocyte function in vitro. Reduction of lysosomal enzyme release and superoxide production, Inflammation 1:305.CrossRefGoogle Scholar
- Goldstein, I. M., Cerqueira, M., Lind, S., and Kaplan, H. B., 1977, Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface, J. Clin. Invest. 59:249.PubMedCrossRefGoogle Scholar
- Goldstein, I. M., Malmsten, C. L., Kindahl, H., Kaplan, H. B., Ridmark, O., Samuelsson, B., and Weissmann, G., 1978, Thromboxane generation by human peripheral blood polymorphonuclear leukocytes, J. Exp. Med. 148:787.PubMedCrossRefGoogle Scholar
- Haber, F., and Weiss, J., 1934, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. Lond.(A) 147:332.CrossRefGoogle Scholar
- Harrison, J. E., and Schultz, J., 1976, Studies on the chlorinating activity of myeloperoxidase, J. Biol. Chem. 251:1371.PubMedGoogle Scholar
- Harvath, L., and Andersen, B. R., 1979, Defective initiation of oxidative metabolism in polymorphonuclear leukocytes, N. Engl. J. Med. 300:1130.PubMedCrossRefGoogle Scholar
- Hatch, G. E., Nichols, W. K., and Hill, H. R., 1977, Cyclic nucleotide changes in humanGoogle Scholar
- neutrophils induced by chemoattractants and chemoattractant modulators, J. Immunol. 119:450.Google Scholar
- Helfman, D.M., Appelbaum, B.D., Vogler, W. R., and Kuo, J. F., 1983, Phospholipid-sensitive Ca2+-dependent protein kinase and its substrates in human neutrophils, Bio-chem. Biophys. Res. Commun. 111:847.CrossRefGoogle Scholar
- Herlin, T., Petersen, C. S., and Esmann, V., 1978, The role of calcium and cyclic adenosine 3′,5′-monophosphate in the regulation of glycogen metabolism in phagocytosing human polymorphonuclear leukocytes, Biochim. Biophys. Acta 542:63.PubMedCrossRefGoogle Scholar
- Heyneman, R. A., and Bauwens-Monbaliu, D., 1981, Kinetics of nicotinamide adenine dinu-cleotides in oleate-stimulated polymorphonuclear leukocytes, FEBS Lett. 127:87.PubMedCrossRefGoogle Scholar
- Higgs, G. A., Bunting, S., Moncada, S., and Vane, J. R., 1976, Polymorphonuclear leukocytes produce thromboxane A2-like activity during phagocytosis, Prostaglandins 12:749.PubMedGoogle Scholar
- Hirata, F., Corcoran, B. A., Venkatasubramanian, K., Schiffmann, E., and Axelrod, J., 1979, Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes, Proc. Natl. Acad. Sci. (USA) 76:2640.CrossRefGoogle Scholar
- Hoffman, M., and Autor, A. P., 1980, Production of superoxide anion by an NADPH-oxidase from rat pulmonary macrophages, FEBS Lett. 121:352.PubMedCrossRefGoogle Scholar
- Hoffstein, S. T., 1979, Ultrastructural demonstration of calcium loss from local regions of the plasma membrane of surface-stimulated human granulocytes, J. Immunol. 123:1395.PubMedGoogle Scholar
- Hohn, D. C., and Lehrer, R. I., 1975, NADPH oxidase deficiency in X-linked chronic granulomatous disease, J. Clin. Invest. 55:707.PubMedCrossRefGoogle Scholar
- Holmes, B., and Good, R. A., 1972, Metabolic and functional abnormalities of human neutrophils, in: Phagocytic Mechanisms in Health and Disease (R. C. Williams, Jr., ed.), p. 51, Intercontinental Book Corp., New York.Google Scholar
- Holmes, B., Quie, P. G., Windhorst, D. B., and Good, R. A., 1966, Fatal granulomatous disease of childhood: An inborn abnormality of phagocytic function, Lancet 1:1225.PubMedCrossRefGoogle Scholar
- Holmes, B., Page, A. R., and Good, R. A., 1967, Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function, J. Clin. Invest. 46:1422.PubMedCrossRefGoogle Scholar
- Holmes, B., Park, B. H., Malawista, S. E., Quie, P. G., Nelson, D. L., and Good, R. A., 1970, Chronic granulomatous disease in females. A deficiency of leukocyte glutathione peroxidase, N. Engl. J. Med. 283:217.PubMedCrossRefGoogle Scholar
- Huang, C. K., Hill, J. H., Jr., Mackin, W. M., Bormann, B. J., and Becker, E. L., 1983, Effects of chemotactic factors on the protein phosphorylation of rabbit peritoneal neutrophils, Fed. Proc. 42:1080. (Abstr.)Google Scholar
- Iverson, D., DeChatelet, L. R., Spitznagel, J. K., and Wang, P., 1977, Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay, J. Clin. Invest. 59:282.PubMedCrossRefGoogle Scholar
- Iverson, D. B., Wang-Iverson, P., Spitznagel, J. K., and DeChatelet, L. R., 1978, Subcellular localization of NAD(P)H oxidase(s) in human neutrophilic polymorphonuclear leukocytes, Biochem. J. 176:175.PubMedGoogle Scholar
- Iyer, G. Y. N., Islam, M. F., and Quastel, J. H., 1961, Biochemical aspects of phagocytosis, Nature 192:535.CrossRefGoogle Scholar
- Jandl, R. C., Andre-Schwartz, J., Borges-DuBois, L., Kipnes, R. S., McMurrich, B. J., and Babior, B. M., 1978, Termination of the respiratory burst in human neutrophils, J. Clin. Invest. 61:1176.PubMedCrossRefGoogle Scholar
- Johnston, R. B., Jr., 1982, Defects of neutrophil function, N. Engl. J. Med. 307:434.PubMedCrossRefGoogle Scholar
- Johnston, R. B., Jr., and Newman, S. L., 1977, Chronic granulomatous disease, Pediatr. Clin. North Am. 24:365.PubMedGoogle Scholar
- Johnston, R. B., Jr., Keele, B. B., Jr., Misra, H. P., Lehmeyer, J. E., Webb, L. S., Baehner, R. L., and Rajagopalan, K. V., 1975, The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes, J. Clin. Invest. 55:1357.PubMedCrossRefGoogle Scholar
- Jones, H. P., Ghai, G., Petrone, W. F., and McCord, J. M., 1982, Calmodulin-dependent stimulation of the NADPH oxidase of human neutrophils, Biochim. Biophys. Acta 714:152.PubMedCrossRefGoogle Scholar
- Kakinuma, K., and Minakami, S., 1978, Effects of fatty acids on superoxide radical generation in leukocytes, Biochim. Biophys. Acta 538:50.PubMedCrossRefGoogle Scholar
- Kaplan, E. L., Laxdal, T., and Quie, P. G., 1968, Studies of polymorphonuclear leukocytes from patients with chronic granulomatous disease of childhood: Bactericidal capacity for streptococci, Pediatrics 41:591.PubMedGoogle Scholar
- Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y., 1980, Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relationship to phosphatidyl inositol turnover, J. Biol. Chem. 255:2273.PubMedGoogle Scholar
- Kitagawa, S., and Takaku, F., 1981, Effect of the chemotactic peptide on the subsequent superoxide releasing response in human polymorphonuclear leukocytes, FEBS Lett. 128:5.PubMedCrossRefGoogle Scholar
- Kitagawa, S., Takaku, F., and Sakamoto, S., 1980, A comparison of the superoxide-releasing response in human polymorphonuclear leukocytes and monocytes, J. Immunol. 125: 359.PubMedGoogle Scholar
- Klebanoff, S. J., 1967, A peroxidase-mediated antimicrobial system in leukocytes, J. Clin. Invest. 46:1078.Google Scholar
- Klebanoff, S. J., 1970, Myeloperoxidase: Contribution to the microbicidal activity of intact leukocytes, Science 169:1095.PubMedCrossRefGoogle Scholar
- Klebanoff, S. J., 1974, Role of superoxide anion in the myeloperoxidase-mediated antimicrobial system, J. Biol. Chem. 249:3724.PubMedGoogle Scholar
- Klebanoff, S. J., 1975, Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes, Semin. Hematol. 12:117.PubMedGoogle Scholar
- Klebanoff, S. J., 1980, Oxygen metabolism and the toxic properties of phagocytes, Ann. Intern. Med. 93:480.PubMedGoogle Scholar
- Klebanoff, S. J., and Pincus, S. H., 1971, Hydrogen peroxide utilization in myeloperoxi-dase-deficient leukocytes: A possible microbicidal control mechanism, J. Clin. Invest. 50:2226.PubMedCrossRefGoogle Scholar
- Komiyama, A., Morosawa, H., Nakahata, T., Miyagawa, Y., and Akabane, T., 1979, Abnormal neutrophil maturation in a neutrophil defect with morphologic abnormality and impaired function, J. Pediatr. 94:19.PubMedCrossRefGoogle Scholar
- Korchak, H. M., and Weissmann, G., 1978, Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation, Proc. Natl. Acad. Sci. (USA) 75:3818.CrossRefGoogle Scholar
- Korchak, H. M., and Weissmann, G., 1980, Stimulus-response coupling in the human neutrophil. Transmembrane potential and the role of extracellular Na+, Biochim. Biophys. Acta 601:180.PubMedCrossRefGoogle Scholar
- Kuo, J. F., Anderson, R. G. G., Wise, B. C., Mackerlova, L., Salomonsson, I., Brackett, N. L., Katoh, N., Shoji, M., and Wrenn, R. W., 1980, Calcium-dependent protein kinase: Widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine, Proc. Natl. Acad. Sci. (USA) 77:7039.CrossRefGoogle Scholar
- Kuroki, M., Kamo, N., Kobatake, Y., Okimasu, E., Utsumi, K., 1982, Measurement of membrane potential in polymorphonuclear leukocytes and its changes during surface stimulation, Biochim. Biophys. Acta 693:326.PubMedCrossRefGoogle Scholar
- Landing, B. H., and Shirkey, H. S., 1957, A syndrome of recurrent infections and infiltration of viscera by pigmented lipid histiocytes, Pediatrics 20:431.PubMedGoogle Scholar
- Lehmeyer, J. E., and Johnston, R. B., Jr., 1978, Effect of anti-inflammatory drugs and agents that elevate intracellular cyclic AMP on the release of toxic oxygen metabolites: Studies in a model of tissue-bound IgG, Clin. Immunol. Immunopathol. 9:482.PubMedCrossRefGoogle Scholar
- Lehmeyer, J. E., Snyderman, R., and Johnston, R. B., Jr., 1979, Stimulation of neutrophil oxidative metabolism by chemotactic peptides: Influence of calcium ion concentration and cytochalasin B and comparison with stimulation by phorbol myristate acetate, Blood 54:35.PubMedGoogle Scholar
- Lehrer, R. I., and Cline, M. J., 1969, Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to Candida infection, J. Clin. Invest. 48:1478.PubMedCrossRefGoogle Scholar
- Lew, P. D., and Stossel, T. P., 1981, Effect of calcium on superoxide production by phagocytic vesicles from rabbit alveolar macrophages, J. Clin. Invest. 67:1.PubMedCrossRefGoogle Scholar
- Lew, P. D., Southwick, F. S., Stossel, T. P., Whitin, J. C., Simons, E., and Cohen, H. J., 1981, A variant of chronic granulomatous disease: Deficient oxidative metabolism due to a low-affinity NADPH oxidase, N. Engl. J. Med. 305:1329.PubMedCrossRefGoogle Scholar
- Light, D. R., Walsh, C., O’Callaghan, A. M., Goetzl, E. J., and Tauber, A. L., 1981, Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of. human polymorphonuclear leukocytes, Biochemistry 20:1468.PubMedCrossRefGoogle Scholar
- Mandell, G. L., 1974, Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils, Infect. Immun. 9:337.PubMedGoogle Scholar
- Mandell, G. L., and Hook, E. W., 1969, Leukocyte function in chronic granulomatous disease, Am. J. Med. 47:473.PubMedCrossRefGoogle Scholar
- Matsumoto, T., Takeshige, K., and Minakami, S., 1979, Inhibition of phagocytotic metabolic changes of leukocytes by an intracellular calcium-antagonist 8-(N,N-diethylamine)-octyl-3,4,5-trimethoxybenzoate, Biochem. Biophys. Res. Commun. 88:974.PubMedCrossRefGoogle Scholar
- May, C. D., Levine, B. B., and Weissmann, G., 1970, Effects of compounds which inhibit antigenic release of histamine and phagocytic release of lysosomal enzyme on glucose utilization by leukocytes in humans, Proc. Soc. Exp. Biol. Med. 133:758.PubMedGoogle Scholar
- McPhail, L. C., and Snyderman, R., 1983, Activation of the respiratory burst enzyme in human polymorphonuclear leukocytes by chemoattractants and other soluble stimuli. Evidence that the same oxidase is activated by different transductional mechanisms, J. Clin. Invest. 72:192.PubMedCrossRefGoogle Scholar
- McPhail, L. C., DeChatelet, L. R., and Shirley, P. S., 1976, Further characterization of NADPH oxidase activity of human polymorphonuclear leukocytes, J. Clin. Invest. 58:774.PubMedCrossRefGoogle Scholar
- McPhail, L. C., DeChatelet, L. R., Shirley, P. S., Wilfert, C., Johnston, R. B., Jr., and McCall, C. E., 1977, Deficiency of NADPH oxidase activity in chronic granulomatous disease, J. Pediatr. 90:213.PubMedCrossRefGoogle Scholar
- McPhail, L. C., DeChatelet, L. R., and Johnston, Jr., R. B., 1979, Generation of chemilumi-nescence by a particulate fraction isolated from human neutrophils. Analysis of molecular events, J. Clin. Invest. 63:648.PubMedCrossRefGoogle Scholar
- McPhail, L. C., Henson, P. M., and Johnston, R. B., Jr., 1981a, Respiratory burst enzyme in human neutrophils. Evidence for multiple mechanisms of activation, J. Clin. Invest. 67:710.PubMedCrossRefGoogle Scholar
- McPhail, L. C., Musson, R. A., and Johnston, R. B., Jr., 1981b, Superoxide generation by human monocytes and monocyte-derived macrophages: Characterization of a monocyte subcellular NADPH oxidase, Fed. Proc. 40:4987. (Abstr.)Google Scholar
- Millard, J. A., Gerard, K. W., and Schneider, D. L., 1979, The isolation from rat peritoneal leukocytes of plasma membrane enriched in alkaline phosphatase and a b-type cytochrome, Biochem. Biophys. Res. Commun. 90:321.CrossRefGoogle Scholar
- Mills, E. L., Thompson, T., Bjorksten, B., Filipovich, D., and Quie, P. G., 1979, The chemiluminescence response and bactericidal activity of polymorphonuclear neutrophils from newborns and their mothers, Pediatrics 63:429.PubMedGoogle Scholar
- Minakuchi, R., Takai, Y., Yu, B., and Nishizuka, Y., 1981, Widespread occurrence of calcium-activated, phospholipid-dependent protein kinase in mammalian tissues, J. Bio- chem. 89:1651.Google Scholar
- Molski, T. F. P., Naccache, P. H., Borgeat, P., and Sha’afi, R. I., 1981, Similarities in the mechanisms by which formyl-methionyl-leucyl-phenylalanine, arachidonic acid and leukotriene B4 increase calcium and sodium influxes in rabbit neutrophils, Biochem. Biophys. Res. Commun. 103:227.PubMedCrossRefGoogle Scholar
- Musson, R. A., McPhail, L. C., Shafran, H., and Johnston, R. B., Jr., 1982, Differences in the ability of human peripheral blood monocytes and in vitro monocyte-derived macrophages to produce superoxide anion, J. Reticuloendothel Soc. 31:261.PubMedGoogle Scholar
- Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1977, Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leukocyte membranes. Effect of chemotactic factor, J. Cell. Biol. 73:428.PubMedCrossRefGoogle Scholar
- Naccache, P. H., Volpi, M., Showell, H. J., Becker, E. L., Sha’afi, R. I., 1979, Chemotactic factor-induced release of membrane calcium in rabbit neutrophils, Science 203:461.PubMedCrossRefGoogle Scholar
- Nakagawara, A., and Minakami, S., 1975, Generation of superoxide anions by leukocytes treated with cytochalasin E, Biochem. Biophys. Res. Commun. 64:760.PubMedCrossRefGoogle Scholar
- Nauseef, W. M., Metcalf, J. A., and Root, R. K., 1983, Role of myeloperoxidase in the respiratory burst of human neutrophils, Blood 61:483.PubMedGoogle Scholar
- Newburger, P. E., and Tauber, A. I., 1982, Heterogeneous pathways of oxidizing radical production in human neutrophils and the HL-60 cell line, Pediatr. Res. 16:856.PubMedCrossRefGoogle Scholar
- Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifìes with protein kinase C,Proc. Natl. Acad. Sci. (USA) 80:36.CrossRefGoogle Scholar
- Ochs, D. L., and Reed, P. W., 1981, Inhibition of the neutrophil oxidative burst and degranulation by phenothiazines, Biochem. Biophys. Res. Commun. 102:958.PubMedCrossRefGoogle Scholar
- Pabst, M. J., and Johnston, R. B., Jr., 1980, Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide, J. Exp. Med. 151:101.PubMedCrossRefGoogle Scholar
- Patriarca, P., Cramer, R., Moncalvo, S., Rossi, F., and Romeo, D., 1971, Enzymatic basis of metabolic stimulation in leukocytes during phagocytosis: The role of activated NADPH oxidase, Arch. Biochem. Biophys. 145:255.PubMedCrossRefGoogle Scholar
- Patriarca, P., Cramer, R., Dri, P., Fant, L., Basford, R. E., and Rossi, F., 1973, NADPH oxidizing activity in rabbit polymorphonuclear leukocytes: Localization in azurophilic granules, Biochem. Biophys. Res. Commun. 53:830.PubMedCrossRefGoogle Scholar
- Pike, M. C., and Snyderman, R., 1981, Transmethylation reactions are required for initial morphologic and biochemical responses of human monocytes to chemoattractants, J. Immunol. 127:1444.PubMedGoogle Scholar
- Pryzwansky, K. B., Steiner, A. L., Spitznagel, J. K., and Kapoor, C. L., 1981, Compartmentalization of cyclic AMP during phagocytosis by human neutrophilic granulocytes, Science 211:407.PubMedCrossRefGoogle Scholar
- Qualliotine, D., DeChatelet, L. R., McCall, C. E., and Cooper, M. R., 1972, Stimulation of oxidative metabolism in polymorphonuclear leukocytes by catecholamines, J. Reticuloendothel. Soc. 11:263.PubMedGoogle Scholar
- Quie, P. G., White, J. G., Holmes, B., and Good, R. A., 1967, In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood, J. Clin. Invest. 46:668.PubMedCrossRefGoogle Scholar
- Repine, J. E., White, J. G., Clawson, C. C., Holmes, B. M., 1974, The influence of phorbol myristate acetate on oxygen consumption by polymorphonuclear leukocytes, J. Lab. Clin. Med. 83:911.PubMedGoogle Scholar
- Romeo, D., Zabucchi, G., Miani, M., and Rossi, F., 1975, Ion movement across leukocyte plasma membrane and excitation of their metabolism, Nature 253:542.PubMedCrossRefGoogle Scholar
- Rosen, H., and Klebanoff, S. J., 1976, Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes, J. Clin. Invest. 58:50.PubMedCrossRefGoogle Scholar
- Rosen, H., and Klebanoff, S. J., 1979a, Bactericidal activity of a superoxide anion-generating system: A model for the polymorphonuclear leukocyte, J. Exp. Med. 149:27.PubMedCrossRefGoogle Scholar
- Rosen, H., and Klebanoff, S. J., 1979b, Hydroxyl radical generation by polymorphonuclear leukocytes measured by electron spin resonance spectroscopy, J. Clin. Invest. 64:1725.PubMedCrossRefGoogle Scholar
- Rossi, F., Patriarca, P., Berton, G., and De Nicola, G., 1980, Subcellular localization of the enzyme responsible for the respiratory burst in resting and phorbol myristate acetate activated leukocytes, in: Biological and Clinical Aspects of Superoxide and Superoxide Dismutase (W. H. Bannister and J. V. Bannister, eds.), pp. 193–200, Elsevier-North Holland, New York.Google Scholar
- Rossi, F., Della Bianca, V., and Bellavite, P., 1981, Inhibition of the respiratory burst and of phagocytosis by nordihydroguaiaretic acid in neutrophils, FEBS Lett. 127:183.PubMedCrossRefGoogle Scholar
- Sasada, M., Pabst, M. J., and Johnston, R. B., Jr., 1983, Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide producing NADPH oxidase, J. Biol Chem. 258:9631.PubMedGoogle Scholar
- Sbarra, A. J., and Karnovsky, M. L., 1959, The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes, J. Biol. Chem. 234:1355.PubMedGoogle Scholar
- Schell-Frederick, E., 1974, Stimulation of the oxidative metabolism of polymorphonuclear leukocytes by the calcium ionophore A23187, FEBS Lett. 48:37.PubMedCrossRefGoogle Scholar
- Schneider, C., Zanetti, M., and Romeo, D., 1981, Surface-reactive stimuli selectively increase protein phosphorylation in human neutrophils, FEBS Lett. 127:4.PubMedCrossRefGoogle Scholar
- Segal, A. W., and Jones, O. T. G., 1980, Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease, FEBS Lett. 110:111.PubMedCrossRefGoogle Scholar
- Segal, A. W., and Peters, T. J., 1976, Characterization of the enzyme defect in chronic granulomatous disease, Lancet 1:1363.PubMedCrossRefGoogle Scholar
- Segel, A. W., Jones, O. T. G., Webster, D., and Allison, A. C., 1978, Absence of a newly described cytochrome b from patients with chronic granulomatous disease, Lancet 1:949.Google Scholar
- Segal, A. W., Cross, A. R., Garcia, R. C., Borregaard, N., Valerius, N. H., Soothill, J. F., and Jones, O. T. G., 1983, Absence of cytochrome b-245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance, N. Engl. J. Med. 308:245.PubMedCrossRefGoogle Scholar
- Seligmann, B. E., and Gallin, J. I., 1980, Use of lipophilic probes of membrane potential to assess human neutrophil activation. Abnormality in chronic granulomatous disease, J. Clin. Invest. 66:493.PubMedCrossRefGoogle Scholar
- Seligmann, B. E., Gallin, E. K., Martin, D. L., Shain, W., and Gallin, J. I., 1980, Interaction of chemotactic factors with human polymorphonuclear leukocytes: Studies using a membrane potential sensitive cyanine dye, J. Membr. Biol. 52:257.PubMedCrossRefGoogle Scholar
- Selvaraj, R. J., and Sbarra, A. J., 1966, Relationship of glycolytic and oxidative metabolism to particle entry and destruction in phagocytosing cells, Nature 211:1272.PubMedCrossRefGoogle Scholar
- Serhan, C., Anderson, P., Goodman, E., Dunham, P., and Weissmann, G., 1981,Phosphatidate and oxidized fatty acids are calcium ionophores. Studies employing arsenazo III in liposomes, J. Biol. Chem. 256:2736.PubMedGoogle Scholar
- Serhan, C. N., Fridovich, J., Goetzl, E. J., Dunham, P. B., and Weissmann, G., 1982a, Leukotriene B4 and phosphatidic acid are calcium ionophores. Studies employing arsenazo III in liposomes, J. Biol. Chem. 257:4746.PubMedGoogle Scholar
- Serhan, C. N., Radin, A., Smolen, J. E., Korchak, H., Samuelsson, B., and Weissmann, G., 1982b, Leukotriene B4 is a complete secretagogue in human neutrophils: A kinetic analysis, Biochem. Biophys. Res. Commun. 107:1006.PubMedCrossRefGoogle Scholar
- Serhan, C. N., Broekman, M. J., Korchak, H. M., Smolen, J. E., Marcus, A. J., and Weissmann, G., 1983, Changes in phosphatidylinositol and phosphatidic acid in stimulated human neutrophils. Relationship to calcium mobilization, aggregation and superoxide radical generation, Biochim. Biophys. Acta 762:420.PubMedCrossRefGoogle Scholar
- Shigeoka, A. O., Santos, J. I., and Hill, H. R., 1979, Functional analysis of neutrophil granulocytes from healthy, infected, and stressed neonates, J. Pediatr. 95:454.PubMedCrossRefGoogle Scholar
- Simchowitz, L., and Spilberg, I., 1979a, Generation of superoxide radicals by human peripheral neutrophils activated by chemotactic factor. Evidence for the role of calcium, J. Lab. Clin. Med. 93:583.PubMedGoogle Scholar
- Simchowitz, L., and Spilberg, I., 1979b, Chemotactic factor-induced generation of superoxide radicals by human neutrophils: Evidence for the role of sodium, J. Immunol. 123: 2428.PubMedGoogle Scholar
- Simchowitz, L., Mehta, J., and Spilberg, I., 1979, Chemotactic factor-induced generation of superoxide radicals by human neutrophils. Effect of metabolic inhibitors and antiinflammatory drugs, Arthritis Rheum. 22:755.PubMedCrossRefGoogle Scholar
- Simchowitz, L., Atkinson, J. P., and Spilberg, I., 1980a, Stimulus-specific deactivation of chemotactic factor-induced cyclic AMP response and superoxide generation by human neutrophils, J. Clin. Invest. 66:736.PubMedCrossRefGoogle Scholar
- Simchowitz, L., Fischbein, L. C., Spilberg, I., and Atkinson, J. P., 1980b, Induction of a transient elevation in intracellular levels of adenosine-3′,5′-cyclic monophosphate by chemotactic factors: An early event in human neutrophil activation, J. Immunol. 124: 1482.PubMedGoogle Scholar
- Sloan, E. P., Crawford, D. R., and Schneider, D. L., 1981, Isolation of plasma membrane from human neutrophils and determination of cytochrome b and quinone content, J. Exp. Med. 153:1316.PubMedCrossRefGoogle Scholar
- Smith, R. J., and Iden, S. S., 1981, Modulation of human neutrophil superoxide anion generation by the calcium antagonist 8-(N,N-diethylamino)-octyl-(3,4,5-trimethoxy) benzoate hydrochloride, J. Reticuloendothel. Soc. 29:215.PubMedGoogle Scholar
- Smith, R. J., and Ignarro, L. J., 1975, Bioregulation of lysosomal enzyme secretion from human neutrophils: Roles of guanosine 3′:5′-monophosphate and calcium in stimulus-secretion coupling, Proc. Natl. Acad. Sci. (USA) 72:108.CrossRefGoogle Scholar
- Smolen, J. E., and Weissmann, G., 1980, Effects of indomethacin, 5,8,11,14-eicosatetraynoic acid, and p-bromophenacyl bromide on lysosomal enzyme release and superoxide anion generation by human polymorphonuclear leukocytes, Biochem. Pharmacol. 29:533.PubMedCrossRefGoogle Scholar
- Smolen, J. E., and Weissmann, G., 1981, Stimuli which provoke secretion of azurophil enzymes from human neutrophils induce increments in adenosine cyclic 3′-5′-monophosphate, Biochim. Biophys. Acta 672:197.PubMedCrossRefGoogle Scholar
- Smolen, J. E., and Weissmann, G., 1982, The effect of various stimuli and calcium antagonists on the fluorescence response of chlorotetracycline-loaded human neutrophils, Biochim. Biophys. Acta 720:172.PubMedCrossRefGoogle Scholar
- Smolen, J. E., Korchak, H. M., and Weissmann, G., 1980, Increased levels of cyclic adenosine-3′,5′-monophosphate in human polymorphonuclear leukocytes after surface stimulation, J. Clin. Invest. 65:1077.PubMedCrossRefGoogle Scholar
- Smolen, J. E., Korchak, H. M., and Weissmann, G., 1981, The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils, Biochim. Biophys. Acta 677:512.PubMedCrossRefGoogle Scholar
- Stenson, W. F., and Parker, C. W., 1979, Metabolism of arachidonic acid in ionophore-stimulated neutrophils, J. Clin. Invest. 64:1457.PubMedCrossRefGoogle Scholar
- Stocker, R., and Richter, C., 1982, Involvement of calcium, calmodulin and phospholipase A in the alteration of membrane dynamics and superoxide production of human neutrophils stimulated by phorbol myristate acetate, FEBS Lett. 147:243.PubMedCrossRefGoogle Scholar
- Stossel, T. P., Root, R. K., and Vaughan, M., 1972, Phagocytosis in chronic granulomatous disease and the Chediak-Higashi syndrome, N. Engl. J. Med. 286:120.PubMedCrossRefGoogle Scholar
- Strauss, R. G., Bove, K. E., Jones, J. F., Mauer, A. M., and Fulginiti, V. A., 1974, An anomaly of neutrophil morphology with impaired function, N. Engl. J. Med. 290:478.PubMedCrossRefGoogle Scholar
- Suzuki, Y., and Lehrer, R. I., 1980, NAD(P)H oxidase activity in human neutrophils stimulated by phorbol myristate acetate, J. Clin. Invest. 66:1409.PubMedCrossRefGoogle Scholar
- Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., 1979, Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids, J. Biol. Chem. 254:3692.PubMedGoogle Scholar
- Takenawa, T., Homma, Y., and Nagai, Y., 1983, Role of Ca2+ in phosphatidylinositol response and arachidonic acid release in formylated tripeptide or Ca2+ ionophore A23187-stimulated guinea pig neutrophils, J. Immunol. 130:2849.PubMedGoogle Scholar
- Takeshige, K., and Minakami, S., 1981, Involvement of calmodulin in phagocytotic respiratory burst of leukocytes, Biochem. Biophys. Res. Commun. 99:484.PubMedCrossRefGoogle Scholar
- Takeshige, K., Nabi, Z. F., Tatscheck, B., and Minakami, S., 1980, Release of calcium from membranes and its relation to phagocytotic metabolic changes: A fluorescence study on leukocytes loaded with Chlortetracycline, Biochem. Biophys. Res. Commun. 95:410.PubMedCrossRefGoogle Scholar
- Tauber, A. I., and Babior, B. M., 1977, Evidence for hydroxyl radical production by human neutrophils, J. Clin. Invest. 60:374.PubMedCrossRefGoogle Scholar
- Tauber, A. I., and Goetzl, E. J., 1979, Structural and catalytic properties of the solubilized superoxide-generating activity of human polymorphonuclear leukocytes. Solubilization, stabilization in solution, and partial characterization, Biochemistry 18:5576.PubMedCrossRefGoogle Scholar
- Utsumi, K., Sugiyama, K., Miyahara, M., Naito, M., Awai, M., and Inoue, M., 1977, Effect of concanavalin A on membrane potential of polymorphonuclear leukocyte monitored by fluorescent dye, Cell Struct. Fune. 2:203.CrossRefGoogle Scholar
- Van Epps, D. E., and Garcia, M. L., 1980, Enhancement of neutrophil function as a result of prior exposure to chemo tactic factor, J. Clin. Invest. 66:167.PubMedCrossRefGoogle Scholar
- Walsh, C. E., Waite, B. M., Thomas, M. J., and DeChatelet, L. R., 1981, Release and metabolism of arachidonic acid in human neutrophils, J. Biol. Chem. 256:7228.PubMedGoogle Scholar
- Webster, R. O., Hong, S. R., Johnston, R. B., Jr., and Henson, P. M., 1980, Biological effects of the human complement fragments C5a and C5ades Arg on neutrophil function, Immunopharmacology 2:201.PubMedCrossRefGoogle Scholar
- Weening, R. S., Roos, D., Weemaes, C. M. R., Homan-Muller, J. W. T., and van Schaik, M. L. T., 1976, Defective initiation of the metabolic stimulation in phagocytizing granulocytes: A new congenital defect, J. Lab. Clin. Med. 88:757.PubMedGoogle Scholar
- Weiss, S. J., King, G. W., and Lobuglio, A. F., 1977, Evidence for hydroxyl radical generation by human monocytes, J. Clin. Invest. 60:370.PubMedCrossRefGoogle Scholar
- Weiss, S. J., Klein, R., Slivka, A., and Wei, M., 1982, Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation, J. Clin. Invest. 70:598.PubMedCrossRefGoogle Scholar
- Wentzell, B., and Epand, R. M., 1978, Stimulation of the release of prostaglandins from polymorphonuclear leukocytes by the calcium ionophore A23187, FEBS Lett. 86:255.PubMedCrossRefGoogle Scholar
- Whitin, J. C., Chapman, C. E., Simons, E. R., Chovaniec, M. E., and Cohen, H. J., 1980, Correlation between membrane potential changes and superoxide production in human granulocytes stimulated by phorbol myristate acetate. Evidence for defective activation in chronic granulomatous disease, J. Biol. Chem. 255:1874.PubMedGoogle Scholar
- Wright, W. C., Jr., Ank, B. J., Herbert, J., and Stiehm, E. R., 1975, Decreased bactericidal activity of leukocytes of stressed newborn infants, Pediatrics 56:569.Google Scholar
- Yamaguchi, T., Sato, K., Dhimada, K., and Kakinuma, K., 1982, Subcellular localization of O2- generating enzyme in guinea pig polymorphonuclear leukocytes: Fractionation of subcellular particles by using a Percoll density gradient, J. Biochem. 91:31.PubMedGoogle Scholar
- Yuli, I., Tomonaga, A., and Snyderman, R., 1982, Chemoattractant receptor functions in human polymorphonuclear leukocytes are divergently altered by membrane fluidizers, Proc. Natl. Acad. Sci. (USA) 79:5906.CrossRefGoogle Scholar
- Zurier, R. B., and Sayadoff, D. M., 1975, Release of prostaglandins from human polymorphonuclear leukocytes, Inflammation 1:93.CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1984